Efficient multivariate approximation on the cube

被引:3
|
作者
Nasdala, Robert [1 ]
Potts, Daniel [1 ]
机构
[1] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
关键词
65T40; 65T50; 42B05;
D O I
10.1007/s00211-021-01177-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine a periodization strategy for weighted L-2-integrands with efficient approximation methods in order to approximate multivariate non-periodic functions on the high-dimensional cube [-1/2, 1/2](d). Our concept allows to determine conditions on the d-variate torus-to-cube transformations psi : [-1/2, 1/2](d) -> [-1/2, 1/2](d) such that a nonperiodic function is transformed into a smooth function in the Sobolev space H-m(T-d) when applying psi. We adapt L-infinity(T-d)- and L-2(T-d)-approximation error estimates for single rank-1 lattice approximation methods and adjust algorithms for the fast evaluation and fast reconstruction of multivariate trigonometric polynomials on the torus in order to apply these methods to the non-periodic setting. We illustrate the theoretical findings by means of numerical tests in up to d = 5 dimensions.
引用
收藏
页码:393 / 429
页数:37
相关论文
共 50 条