Predicting the likelihood of 30-day hospital readmissions among stroke patients: An application of machine-learning techniques

被引:0
|
作者
Menzin, Jordan [1 ]
Friedman, Mark [1 ]
Watzker, Anna [1 ]
Menzin, Joseph [1 ]
机构
[1] BHE, Boston, MA USA
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
504
引用
收藏
页码:248 / 248
页数:1
相关论文
共 50 条
  • [1] Identifying risk factors for 30-day hospital readmissions among heart failure patients using machine-learning techniques
    Menzin, Joseph
    Menzin, Jordan
    Friedman, Mark
    Watzker, Anna
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 : 66 - 66
  • [2] THE DETERMINANTS OF 30-DAY HOSPITAL READMISSIONS AMONG PATIENTS WITH ASTHMA
    Kim, M.
    Asche, C., V
    Tillis, W.
    VALUE IN HEALTH, 2015, 18 (03) : A172 - A172
  • [3] Simplification of the HOSPITAL score for predicting 30-day readmissions
    Aubert, Carole E.
    Schnipper, Jeffrey L.
    Williams, Mark V.
    Robinson, Edmondo J.
    Zimlichman, Eyal
    Vasilevskis, Eduard E.
    Kripalani, Sunil
    Metlay, Joshua P.
    Wallington, Tamara
    Fletcher, Grant S.
    Auerbach, Andrew D.
    Aujesky, Drahomir
    Donze, Jacques D.
    BMJ QUALITY & SAFETY, 2017, 26 (10) : 799 - 805
  • [4] Predicting 30-day all-cause hospital readmissions
    Shulan, Mollie
    Gao, Kelly
    Moore, Crystal Dea
    HEALTH CARE MANAGEMENT SCIENCE, 2013, 16 (02) : 167 - 175
  • [5] Predicting 30-day all-cause hospital readmissions
    Mollie Shulan
    Kelly Gao
    Crystal Dea Moore
    Health Care Management Science, 2013, 16 : 167 - 175
  • [6] The Impact of Ischaemic Stroke Subtype on 30-day Hospital Readmissions
    Bjerkreim, Anna Therese
    Khanevski, Andrej Netland
    Selvik, Henriette Aurora
    Waje-Andreassen, Ulrike
    Thomassen, Lars
    Naess, Halvor
    Logallo, Nicola
    STROKE RESEARCH AND TREATMENT, 2018, 2018
  • [7] Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach
    Sharma, Vishal
    Kulkarni, Vinaykumar
    McAlister, Finlay
    Eurich, Dean
    Keshwani, Shanil
    Simpson, Scot H.
    Voaklander, Don
    Samanani, Salim
    JOURNAL OF CARDIAC FAILURE, 2022, 28 (05) : 710 - 722
  • [8] Predicting Risk of 30-Day Readmissions Using Two Emerging Machine Learning Methods
    Mahajan, Satish M.
    Mahajan, Amey S.
    King, Robert
    Negahban, Sahand
    NURSING INFORMATICS 2018: ICT TO IMPROVE QUALITY AND SAFETY AT THE POINT OF CARE, 2018, 250 : 250 - 255
  • [9] Avoidable 30-Day Readmissions Among Patients With Stroke and Other Cerebrovascular Disease
    Nahab, Fadi
    Takesaka, Jennifer
    Mailyan, Eugene
    Judd, Lilith
    Culler, Steven
    Webb, Adam
    Frankel, Michael
    Choi, Dennis
    Helmers, Sandra
    NEUROHOSPITALIST, 2012, 2 (01): : 7 - 11
  • [10] PREDICTING FACTORS FOR 30-DAY HOSPITAL RE-ADMISSIONS AMONG STROKE PATIENTS, IN SINGAPORE
    Goh, S. P.
    De Leon, J.
    Tham, C.
    Liu, T.
    Teo, J.
    Chua, Y. C.
    INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (1_SUPPL) : 411 - 411