Individual-based dendrogenomic analysis of forest dieback driven by extreme droughts

被引:15
|
作者
Fasanella, M. [1 ]
Suarez, M. L. [1 ]
Hasbun, R. [2 ]
Premoli, A. C. [1 ]
机构
[1] Univ Nacl Comahue, Lab Ecotono, INIBIOMA CONICET, San Carlos De Bariloche, Rio Negro, Argentina
[2] Univ Concepcion, Fac Ciencias Forestales, Dept Silvicultura, Lab Epigenet Vegetal, Concepcion, Chile
关键词
resilience; dendrophenotypes; tree genomics; hydric stress; SNPs; PRECIPITATION GRADIENT; NOTHOFAGUS; RESILIENCE; RESISTANCE; GROWTH; GENES;
D O I
10.1139/cjfr-2020-0221
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Droughts driven by global change are triggering worldwide forest dieback, a phenomenon that is predicted to worsen. We combined genome-wide single nucleotide polymorphisms (SNPs) and dendrochronological approaches to assess genetically-based individual tree vulnerability to past extreme droughts that caused massive mortality of coihue (Nothofagus dombeyi (Mirb.) Blume) forests in northern Patagonia, Argentina. We collected fresh leaves and wood cores from pairs of trees, one with a healthy crown (HC) and another with a partially affected crown (PA), at four sites impacted by droughts in 1998, 2008, and 2014. We used dendrochronological techniques to estimate parameters in terms of growth trends due to drought and genomic analysis to assess the relationship of genomic variation with water stress. While 5155 neutral loci did not differentiate PA from HC trees, a set of 33 adaptive SNPs did, 8 of which were related to water stress. Association analysis between genomic variants and dendrophenotypic traits yielded 6 SNPs that were associated with a growth measure as resilience to cope with drought. Our preliminary results indicate that susceptibility to drought in N. dombeyi could be determined at the genomic level. The combination of these approaches provides a framework for the identification and analysis of candidate genes for stress response in non-model species.
引用
收藏
页码:420 / 432
页数:13
相关论文
共 50 条
  • [1] Individual-based Methods in Forest Ecology and Management
    Meador, Andrew J. Sanchez
    ECOLOGICAL MODELLING, 2020, 428
  • [3] Linkages - An individual-based forest ecosystem model
    Post, WM
    Pastor, J
    CLIMATIC CHANGE, 1996, 34 (02) : 253 - 261
  • [4] INDIVIDUAL-BASED MODELS OF FOREST VEGETATION DYNAMICS
    KAREV, GP
    DOKLADY AKADEMII NAUK, 1994, 337 (02) : 273 - 275
  • [5] Tamm Review: Individual-based forest management or Seeing the trees for the forest
    Pommerening, Arne
    Maleki, Kobra
    Haufe, Jens
    FOREST ECOLOGY AND MANAGEMENT, 2021, 501
  • [6] Advances in spatial, individual-based modelling of forest dynamics
    Busing, RT
    Mailly, D
    JOURNAL OF VEGETATION SCIENCE, 2004, 15 (06) : 831 - 842
  • [7] Spatially explicit individual-based simulator for forest plantations
    Jerez, Mamicio
    Rubio, Michail
    Quevedo, Ana
    Jerez, Carlos
    Quintero, Maria
    Vincent, Lawrence
    CIENCIA E INGENIERIA, 2018, 39 (03): : 259 - 268
  • [8] Estimating the carbon fluxes of forests with an individual-based forest model
    Edna R?dig
    Andreas Huth
    Friedrich Bohn
    Corinna Rebmann
    Matthias Cuntz
    ForestEcosystems, 2017, 4 (02) : 133 - 142
  • [9] Modeling forest dynamics with a combined matrix/individual-based model
    Picard, N
    Bar-Hen, A
    Franc, A
    FOREST SCIENCE, 2002, 48 (04) : 643 - 652
  • [10] Estimating the carbon fluxes of forests with an individual-based forest model
    Roedig, Edna
    Huth, Andreas
    Bohn, Friedrich
    Rebmann, Corinna
    Cuntz, Matthias
    FOREST ECOSYSTEMS, 2017, 4