Stability interchanges in a curved Sitnikov problem

被引:9
|
作者
Franco-Perez, Luis [1 ]
Gidea, Marian [2 ]
Levi, Mark [3 ]
Perez-Chavela, Ernesto [4 ]
机构
[1] UAM Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Av Vasco Quiroga 4871, Mexico City 05348, DF, Mexico
[2] Yeshiva Univ, Dept Math Sci, 245 Lexington Ave, New York, NY 10016 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] ITAM Mexico, Dept Matemat, Rio Hondo 1, Mexico City 01080, DF, Mexico
基金
美国国家科学基金会;
关键词
stability interchanges; Sitnikov problem; qualitative theory; POINTS;
D O I
10.1088/0951-7715/29/3/1056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a curved Sitnikov problem, in which an infinitesimal particle moves on a circle under the gravitational influence of two equal masses in Keplerian motion within a plane perpendicular to that circle. There are two equilibrium points, whose stability we are studying. We show that one of the equilibrium points undergoes stability interchanges as the semi-major axis of the Keplerian ellipses approaches the diameter of that circle. To derive this result, we first formulate and prove a general theorem on stability interchanges, and then we apply it to our model. The motivation for our model resides with the n-body problem in spaces of constant curvature.
引用
收藏
页码:1056 / 1079
页数:24
相关论文
共 50 条
  • [1] On equilibrium stability in the Sitnikov problem
    V. O. Kalas
    P. S. Krasil’nikov
    Cosmic Research, 2011, 49 : 534 - 537
  • [2] On equilibrium stability in the Sitnikov problem
    Kalas, V. O.
    Krasil'nikov, P. S.
    COSMIC RESEARCH, 2011, 49 (06) : 534 - 537
  • [3] Stability and bifurcations of even periodic orbits in the Sitnikov problem
    Jorge Galán-Vioque
    Daniel Nuñez
    Andrés Rivera
    Camila Riccio
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [4] Stability of motion in the Sitnikov 3-body problem
    Soulis, P.
    Bountis, T.
    Dvorak, R.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 99 (02): : 129 - 148
  • [5] Stability Analysis of an Equilibrium Position in the Photogravitational Sitnikov Problem
    Bardin, B. S.
    Avdushkin, A. N.
    EIGHTH POLYAKHOV'S READING, 2018, 1959
  • [6] Stability and bifurcations of even periodic orbits in the Sitnikov problem
    Galan-Vioque, Jorge
    Nunez, Daniel
    Rivera, Andres
    Riccio, Camila
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (12):
  • [7] On the Stability of Symmetric Periodic Orbits of the Elliptic Sitnikov Problem
    Cen, Xiuli
    Cheng, Xuhua
    Huang, Zaitang
    Zhang, Meirong
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02): : 1271 - 1290
  • [8] Stability of motion in the Sitnikov 3-body problem
    P. Soulis
    T. Bountis
    R. Dvorak
    Celestial Mechanics and Dynamical Astronomy, 2007, 99 : 129 - 148
  • [9] ON THE SITNIKOV PROBLEM
    Liu, Jie
    Sun, Yi-Sui
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 49 (03): : 285 - 302
  • [10] Quantitative Stability of Certain Families of Periodic Solutions in the Sitnikov Problem
    Galan, Jorge
    Nunez, Daniel
    Rivera, Andres
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 52 - 77