Small modules over quantum complete intersections in two variables

被引:1
|
作者
You, Hanyang [1 ]
Zhang, Pu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Dong Chuan Rd 800, Shanghai 200241, Peoples R China
关键词
Loewy length; quantum complete intersection; diagram presentation of a module; HOCHSCHILD COHOMOLOGY; ALGEBRAS; HOMOLOGY;
D O I
10.1142/S021949882150047X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the left regular module of a quantum complete intersection A(q,n(1),...,n(t)) by the property that it is the unique finite-dimensional indecomposable left A(q,n(1),...,n(t))-module of Loewy length n-ary sumation Sigma(1 <= i <= t) n(i) - t + 1. Using a reduction to A(q, 4, 4)-modules, we classify the 4-dimensional indecomposable left modules over quantum complete intersection A(q,m,n) in two variables, by explicitly giving their diagram presentations. Together with the existed work on indecomposable A(q,m,n)-modules of dimension <= 3, we then know all the indecomposable A(q,m,n)-modules of dimension <= 4.
引用
收藏
页数:37
相关论文
共 50 条