Diagonalizable derivations of finite-dimensional algebras I

被引:4
|
作者
Farkas, DR [1 ]
Geiss, C
Green, EL
Marcos, EN
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[3] Univ Sao Paulo, Dept Matemat, IME, BR-05389970 Sao Paulo, Brazil
关键词
Associative Algebra; Characteristic Zero; Free Algebra; Polynomial Algebra; Monomial Ideal;
D O I
10.1007/BF02773569
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Diagonalizable derivations of a finite-dimensional algebra usually span an ideal in the Lie algebra of all derivations. This ideal is studied for underlying graded, monomial, and path algebras.
引用
收藏
页码:157 / 181
页数:25
相关论文
共 50 条
  • [1] Diagonalizable derivations of finite-dimensional algebras I
    Daniel R. Farkas
    Christof Geiss
    Edward L. Green
    Eduardo N. Marcos
    Israel Journal of Mathematics, 2000, 117 : 157 - 181
  • [2] Diagonalizable derivations of finite-dimensional algebras II
    Farkas, DR
    Green, EL
    Marcos, EN
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 196 (02) : 341 - 351
  • [3] Automorphisms and derivations of finite-dimensional algebras
    Bresar, Matej
    JOURNAL OF ALGEBRA, 2022, 599 : 104 - 121
  • [4] Jordan *-Derivations of Finite-Dimensional Semiprime Algebras
    Fosner, Ajda
    Lee, Tsiu-Kwen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01): : 51 - 60
  • [5] δ-DERIVATIONS OF SEMISIMPLE FINITE-DIMENSIONAL STRUCTURABLE ALGEBRAS
    Kaygorodov, Ivan
    Okhapkina, Elizaveta
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (04)
  • [6] Local derivations on finite-dimensional Lie algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 381 - 398
  • [7] Ternary derivations of finite-dimensional real division algebras
    Jimenez-Gestal, Clara
    Perez-Izquierdo, Jose
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 2192 - 2219
  • [8] 2-Local derivations on finite-dimensional Lie algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Rakhimov, Isamiddin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 1 - 11
  • [9] Local derivations on Borel subalgebras of finite-dimensional simple Lie algebras
    Yu, Yalong
    Chen, Zhengxin
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 1 - 10
  • [10] Investigation of ID-derivations of finite-dimensional nilpotent Lie algebras
    Moosavinejad, Seyed Mahdi
    Saeedi, Farshid
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,