The Gradient Estimate of a Neumann Eigenfunction on a Compact Manifold with Boundary

被引:3
|
作者
Hu, Jingchen [1 ,2 ]
Shi, Yiqian [1 ,2 ]
Xu, Bin [1 ,2 ]
机构
[1] Chinese Acad Sci, USTC, Wu Wen Tsun Key Lab Math, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Neumann eigenfunction; Gradient estimate; SHARP;
D O I
10.1007/s11401-015-0924-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let e(lambda)(x) be a Neumann eigenfunction with respect to the positive Laplacian Delta on a compact Riemannian manifold M with boundary such that Delta e(lambda) = lambda(2)e(lambda) in the interior of M and the normal derivative of e(lambda) vanishes on the boundary of M. Let chi(lambda) be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M. The authors show the following gradient estimate for chi(lambda) f as lambda >= 1: parallel to del chi(lambda) f parallel to(infinity) <= C(lambda parallel to chi(lambda) f parallel to(infinity) + lambda(-1)parallel to Delta chi(lambda) f parallel to(infinity)), where C is a positive constant depending only on M. As a corollary, the authors obtain the gradient estimate of e(lambda): For every lambda >= 1, it holds that parallel to del e(lambda)parallel to(infinity) <= C lambda parallel to e(lambda)parallel to(infinity).
引用
收藏
页码:991 / 1000
页数:10
相关论文
共 50 条