An Ito formula for domain-valued processes driven by stochastic flows

被引:5
|
作者
Kinateder, K [1 ]
McDonald, P
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
[2] New Coll Florida, Dept Math, Sarasota, FL 34243 USA
关键词
stochastic flow; domain functional;
D O I
10.1007/s004400200201
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a natural class of stochastic processes taking values in the space of smoothly bounded domains in R-n with compact closure. These processes are generated by stochastic flows on R-n which are obtained as the solutions of stochastic differential equations on R-n. We establish an Ito formula for smooth domain functionals, applied to processes in this class.
引用
收藏
页码:73 / 99
页数:27
相关论文
共 50 条
  • [1] An Ito formula for domain-valued processes driven by stochastic flows
    Kimberly Kinateder
    Patrick McDonald
    Probability Theory and Related Fields, 2002, 124 : 73 - 99
  • [2] Ito's formula for the Lp-norm of stochastic Wp1-valued processes
    Krylov, N. V.
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (3-4) : 583 - 605
  • [3] STOCHASTIC FLOWS AND GENERALIZED ITO-STRATONOVITCH FORMULA
    BISMUT, JM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (10): : 483 - 486
  • [4] ITO'S FORMULA FOR GAUSSIAN PROCESSES WITH STOCHASTIC DISCONTINUITIES
    Bender, Christian
    ANNALS OF PROBABILITY, 2020, 48 (01): : 458 - 492
  • [5] Ito's Formula for Banach-space-valued Jump Processes Driven by Poisson Random Measures
    Mandrekar, Vidyadhar
    Ruediger, Barbara
    Tappe, Stefan
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VII, 2013, 67 : 171 - 186
  • [6] A GENERALIZED FORMULA OF ITO AND SOME OTHER PROPERTIES OF STOCHASTIC FLOWS
    BISMUT, JM
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (03): : 331 - 350
  • [7] ITO-HENSTOCK INTEGRAL AND ITO'S FORMULA FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    Teng, Timothy Robin Y.
    de Lara-Tuprio, Elvira P.
    MATHEMATICA BOHEMICA, 2018, 143 (02): : 135 - 160
  • [8] GENERALIZED COVARIATION FOR BANACH SPACE VALUED PROCESSES, ITO FORMULA AND APPLICATIONS
    Di Girolami, Cristina
    Russo, Francesco
    OSAKA JOURNAL OF MATHEMATICS, 2014, 51 (03) : 729 - 783
  • [9] STOCHASTIC EQUATIONS, FLOWS AND MEASURE-VALUED PROCESSES
    Dawson, Donald A.
    Li, Zenghu
    ANNALS OF PROBABILITY, 2012, 40 (02): : 813 - 857
  • [10] Measure-valued Markov processes and stochastic flows
    Dorogovtsev A.A.
    Ukrainian Mathematical Journal, 2002, 54 (2) : 218 - 232