Phase uniqueness for the Mallows measure on permutations

被引:7
|
作者
Starr, Shannon [1 ]
Walters, Meg [2 ]
机构
[1] Univ Alabama Birmingham, Appl Math, Birmingham, AL 35294 USA
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
关键词
EMPTINESS FORMATION PROBABILITY; ASYMMETRIC EXCLUSION PROCESS; QUANTUM HEISENBERG MODELS; LARGE DEVIATIONS; MIXING TIMES; SYSTEMS; CHAINS;
D O I
10.1063/1.5017924
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a positive number q, the Mallows measure on the symmetric group is the probability measure on S-n such that P-n,P-q(pi) is proportional to q-to-the-power-inv(pi) where inv(pi) equals the number of inversions: inv(pi) equals the number of pairs i < j such that pi(i) > pi(j). One may consider this as a mean-field model from statistical mechanics. The weak large deviation principle may replace the Gibbs variational principle for characterizing equilibrium measures. In this sense, we prove the absence of phase transition, i.e., phase uniqueness. Published by AIP Publishing.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] The Limit of the Empirical Measure of the Product of Two Independent Mallows Permutations
    Ke Jin
    Journal of Theoretical Probability, 2019, 32 : 1688 - 1728
  • [2] The Limit of the Empirical Measure of the Product of Two Independent Mallows Permutations
    Jin, Ke
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (04) : 1688 - 1728
  • [3] Mallows permutations as stable matchings
    Angel, Omer
    Holroyd, Alexander E.
    Hutchcroft, Tom
    Levy, Avi
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (06): : 1531 - 1555
  • [4] The Kendall and Mallows Kernels for Permutations
    Jiao, Yunlong
    Vert, Jean-Philippe
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1935 - 1944
  • [5] ON THE CYCLE STRUCTURE OF MALLOWS PERMUTATIONS
    Gladkich, Alexey
    Peled, Ron
    ANNALS OF PROBABILITY, 2018, 46 (02): : 1114 - 1169
  • [6] MALLOWS PERMUTATIONS AND FINITE DEPENDENCE
    Holroyd, Alexander E.
    Hutchcroft, Tom
    Levy, Avi
    ANNALS OF PROBABILITY, 2020, 48 (01): : 343 - 379
  • [7] The Kendall and Mallows Kernels for Permutations
    Jiao, Yunlong
    Vert, Jean-Philippe
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (07) : 1755 - 1769
  • [8] Cycles in Mallows random permutations
    He, Jimmy
    Mueller, Tobias
    Verstraaten, Teun W.
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (04) : 1054 - 1099
  • [9] MALLOWS PRODUCT MEASURE
    Bufetov, Alexey
    Chen, Kailun
    arXiv,
  • [10] Limit theorems for longest monotone subsequences in random Mallows permutations
    Basu, Riddhipratim
    Bhatnagar, Nayantara
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1934 - 1951