MILD PRO-p-GROUPS AS GALOIS GROUPS OVER GLOBAL FIELDS

被引:2
|
作者
Salle, Landry [1 ]
机构
[1] Univ Toulouse UPS, Inst Math Toulouse, F-31400 Toulouse, France
关键词
Mild pro-p-groups; restricted ramification; global fields; Galois groups; EXTENSIONS;
D O I
10.1142/S1793042109002377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to finding new examples of mild pro-p-groups as Galois groups over global fields, following the work of Labute ([6]). We focus on the Galois group G(S)(T) of the maximal T-split S-ramified pro-p-extension of a global field k. We first retrieve some facts on presentations of such a group, including a study of the local-global principle for the cohomology group H(2)(G(S)(T), F(p)), then we show separately in the case of function fields and in the case of number fields how it can be used to find some mild pro-p-groups.
引用
收藏
页码:779 / 795
页数:17
相关论文
共 50 条
  • [1] Mild pro-p-groups and Galois groups of p-extensions of Q
    Labute, John
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 596 : 155 - 182
  • [2] Detecting pro-p-groups that are not absolute Galois groups
    Benson, Dave
    Lemire, Nicole
    Minac, Jan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 613 : 175 - 191
  • [3] Finitely generated pro-p-groups as Galois groups of maximal p-extensions of function fields over Q(q)
    Jensen, CU
    Prestel, A
    MANUSCRIPTA MATHEMATICA, 1996, 90 (02) : 225 - 238
  • [4] Mild pro-p-groups with 4 generators
    Bush, Michael R.
    Labute, John
    JOURNAL OF ALGEBRA, 2007, 308 (02) : 828 - 839
  • [5] Finitely generated pro-p absolute Galois groups over global fields
    Efrat, I
    JOURNAL OF NUMBER THEORY, 1999, 77 (01) : 83 - 96
  • [6] Mild 2-relator pro-p-groups
    Bush, Michael R.
    Gaertner, Jochen
    Labute, John
    Vogel, Denis
    NEW YORK JOURNAL OF MATHEMATICS, 2011, 17 : 281 - 294
  • [7] COHOMOLOGY OF NUMBER FIELDS AND ANALYTIC PRO-p-GROUPS
    Maire, Christian
    MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (02) : 399 - 414
  • [8] Pro-p Galois groups of function fields over local fields
    Efrat, I
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) : 2999 - 3021
  • [9] Aspherical pro-p-groups
    Mel'nikov, OV
    SBORNIK MATHEMATICS, 2002, 193 (11-12) : 1639 - 1670
  • [10] Higher Massey products in the cohomology of mild pro-p-groups
    Gaertner, Jochen
    JOURNAL OF ALGEBRA, 2015, 422 : 788 - 820