Inverse scheduling with maximum lateness objective

被引:35
作者
Brucker, Peter [2 ]
Shakhlevich, Natalia V. [1 ]
机构
[1] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Osnabruck, Fachbereich Math Informat, D-49069 Osnabruck, Germany
基金
英国工程与自然科学研究理事会;
关键词
Single-machine scheduling; Maximum lateness; Inverse optimization; OPTIMIZATION;
D O I
10.1007/s10951-009-0117-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a range of counterparts of the single-machine scheduling problem with the maximum lateness criterion that arise in the context of inverse optimization. While in the forward scheduling problem all parameters are given and the objective is to find the optimal job sequence for which the value of the maximum lateness is minimum, in inverse scheduling the exact values of processing times or due dates are unknown, and they should be determined so that a prespecified solution becomes optimal. We perform a fairly complete classification of the corresponding inverse models under different types of norms that measure the deviation of adjusted parameters from their given estimates.
引用
收藏
页码:475 / 488
页数:14
相关论文
共 10 条
[1]   Inverse optimization [J].
Ahuja, RK ;
Orlin, JB .
OPERATIONS RESEARCH, 2001, 49 (05) :771-783
[2]  
[Anonymous], 2004, Scheduling algorithms
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], 1955, 43 U CAL MAN SCI RES
[5]   Real-time scheduling algorithm for minimizing maximum weighted error with O(N log N+cN) complexity [J].
Choi, KH ;
Jung, GY ;
Kim, T ;
Jung, SH .
INFORMATION PROCESSING LETTERS, 1998, 67 (06) :311-315
[6]   Some inverse optimization problems under the Hamming distance [J].
Duin, CW ;
Volgenant, A .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (03) :887-899
[7]   Inverse combinatorial optimization: A survey on problems, methods, and results [J].
Heuberger, C .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (03) :329-361
[8]   ABOUT STRONGLY POLYNOMIAL-TIME ALGORITHMS FOR QUADRATIC OPTIMIZATION OVER SUBMODULAR CONSTRAINTS [J].
HOCHBAUM, DS ;
HONG, SP .
MATHEMATICAL PROGRAMMING, 1995, 69 (02) :269-309
[9]   Necessary and sufficient conditions of optimality for some classical scheduling problems [J].
Lin, Yixun ;
Wang, Xiumei .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 176 (02) :809-818
[10]   Inverse maximum flow problems under the weighted Hamming distance [J].
Liu, Longcheng ;
Zhang, Jianzhong .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2006, 12 (04) :394-407