Semi-Supervised Bearing Fault Diagnosis and Classification Using Variational Autoencoder-Based Deep Generative Models

被引:86
|
作者
Zhang, Shen [1 ]
Ye, Fei [2 ]
Wang, Bingnan [3 ]
Habetler, Thomas G. [1 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Univ Calif Berkeley, Calif PATH, Berkeley, CA 94720 USA
[3] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
关键词
Data models; Fault diagnosis; Sensors; Semisupervised learning; Decoding; Supervised learning; Training; Bearing fault; generative model; semi-supervised learning; variational autoencoders; VIBRATION; NETWORK;
D O I
10.1109/JSEN.2020.3040696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many industries are evaluating the use of the Internet of Things (IoT) technology to perform remote monitoring and predictive maintenance on their mission-critical assets and equipment, for which mechanical bearings are their indispensable components. Although many data-driven methods have been applied to bearing fault diagnosis, most of them belong to the supervised learning paradigm that requires a large amount of labeled training data to be collected in advance. In practical applications, however, obtaining labeled data that accurately reflect real-time bearing conditions can be more challenging than collecting large amounts of unlabeled data. In this paper, we thus propose a semi-supervised learning scheme for bearing fault diagnosis using variational autoencoder (VAE)-based deep generative models, which can effectively leverage a dataset when only a small subset of data have labels. Finally, a series of experiments were conducted using the University of Cincinnati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve University (CWRU) bearing dataset. The experimental results demonstrate that the proposed semi-supervised learning schemes outperformed some mainstream supervised and semi-supervised benchmarks with the same percentage of labeled data samples. Additionally, the proposed methods can mitigate the label inaccuracy issue when identifying naturally-evolved bearing defects.
引用
收藏
页码:6476 / 6486
页数:11
相关论文
共 50 条
  • [1] Fault diagnosis of power equipment based on variational autoencoder and semi-supervised learning
    Ye, Bo
    Li, Feng
    Zhang, Linghao
    Chang, Zhengwei
    Wang, Bin
    Zhang, Xiaoyu
    Bodanbai, Sayina
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (20):
  • [2] Variational Autoencoder for Semi-Supervised Text Classification
    Xu, Weidi
    Sun, Haoze
    Deng, Chao
    Tan, Ying
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3358 - 3364
  • [3] Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
    da Rosa, Tiago Gaspar
    Melani, Arthur Henrique de Andrade
    Pereira, Fabio Henrique
    Kashiwagi, Fabio Norikazu
    de Souza, Gilberto Francisco Martha
    Salles, Gisele Maria De Oliveira
    SENSORS, 2022, 22 (24)
  • [4] A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
    Wu, Xinya
    Zhang, Yan
    Cheng, Changming
    Peng, Zhike
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 149
  • [5] Bearing Fault Diagnosis Based on Deep Semi-supervised Small Sample Classifier
    Hu Yongtao
    Gao Jinfeng
    Zhou Qiang
    Fan Zheng
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [6] Fault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models
    Ko, Taeyoung
    Kim, Heeyoung
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) : 2868 - 2877
  • [7] Semi-supervised multitask deep convolutional generative adversarial network for unbalanced fault diagnosis of rolling bearing
    Changchang Che
    Huawei Wang
    Ruiguan Lin
    Xiaomei Ni
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [8] Semi-supervised multitask deep convolutional generative adversarial network for unbalanced fault diagnosis of rolling bearing
    Che, Changchang
    Wang, Huawei
    Lin, Ruiguan
    Ni, Xiaomei
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (07)
  • [9] INDIAN BUFFET PROCESS DEEP GENERATIVE MODELS FOR SEMI-SUPERVISED CLASSIFICATION
    Chatzis, Sotirios P.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2456 - 2460
  • [10] Interpretable Operational Risk Classification with Semi-Supervised Variational Autoencoder
    Zhou, Fan
    Zhang, Shengming
    Yang, Yi
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 846 - 852