Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo

被引:45
|
作者
Zhu, Zhiwei [1 ]
Du, Hanheng [2 ]
Zhou, Rongjing [3 ]
Huang, Peng [4 ]
Zhu, Wu-Le [5 ]
Guo, Ping [6 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong 999077, Peoples R China
[3] Shanghai Univ Engn Sci, Higher Vocat Tech Coll, Shanghai 200437, Peoples R China
[4] Shenzhen Univ, Coll Mechatron & Control Engn, Shenzhen 518060, Peoples R China
[5] Kyoto Univ, Dept Microengn, Kyoto 6158540, Japan
[6] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
基金
中国国家自然科学基金;
关键词
Multiobjective optimization; nanometric ultra-fast tool servo (NM-FTS); piezo-actuated flexure mechanism; trajectory preshaping; NANOPOSITIONING STAGE; PRECISION; FABRICATION; MECHANISM;
D O I
10.1109/TIE.2019.2896103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper reports on the development of a piezo-actuated nanometric ultra-fast tool servo (NU-FTS) for nanocutting. For motion guidance, a flexure mechanism is especially designed using a novel kind of generalized flexure hinges with the notch profiles described by a rational Bezier curve. Both kinematics and dynamics properties of the mechanism are comprehensively modeled through a novel finite beam modeling method. With this model, the hinge is divided into a set of serially connected beams with constant cross sections. The equivalent stiffness and lumped moving mass of the mechanism are derived based on the Euler-Bernoulli beam theory. Taking advantage of the structure and performance model, the notch shape as well as the dimensions are optimized to achieve the specified criteria for the NU-FTS. Performance of the designed mechanism is verified through both finite-element analysis and practical testing on a prototype. Overall, the NU-FTS is demonstrated to have a stroke of 6 and 1.2 mu m for the quasistatic and 10 kHz driving condition, respectively. Through dynamics inversion-based trajectory preshaping, a maximum following error around 25 and 50 nm is obtained for tracking a simple harmonic and a complicated trajectory, respectively.
引用
收藏
页码:432 / 441
页数:10
相关论文
共 50 条
  • [1] Multi-Physical Design and Resonant Controller Based Trajectory Tracking of the Electromagnetically Driven Fast Tool Servo
    Hussain, Imran
    Xia, Wei
    Zhao, Dongpo
    Huang, Peng
    Zhu, Zhiwei
    ACTUATORS, 2020, 9 (02)
  • [2] Trajectory Tracking Control of a Fast Tool Servo System Driven by Maxwell Electromagnetic Force
    Xia W.
    Zhu Z.
    Chen L.
    Zhu L.
    Zhu Z.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (03): : 259 - 265
  • [3] An Improved Adaptive Feedforward Cancellation for Trajectory Tracking of Fast Tool Servo Based on Fractional Calculus
    Zhou, Xiaoqin
    Zhu, Zhiwei
    Zhao, Shaoxin
    Lin, Jieqiong
    Dou, Jianli
    CEIS 2011, 2011, 15
  • [4] Iterative Learning with Adaptive Sliding Mode Control for Trajectory Tracking of Fast Tool Servo Systems
    Xu, Xiuying
    Liu, Pengbo
    Lu, Shuaishuai
    Wang, Fei
    Yang, Jingfang
    Xiao, Guangchun
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [5] High resolution ultra-fast eye tracking system
    Kostrzewski, A
    Vasiliev, AA
    Kim, DH
    Savant, GD
    ULTRAHIGH- AND HIGH-SPEED PHOTOGRAPHY AND IMAGE-BASED MOTION MEASUREMENT, 1997, 3173 : 249 - 261
  • [6] Design of an ultra-fast electron diffraction system
    Xi'an Institute of Optics and Precision Mechanics, CAS, Xi'an 710068, China
    不详
    Guangzi Xuebao, 2006, 12 (1827-1831):
  • [7] Design optimization of ultra-fast silicon detectors
    Cartiglia, N.
    Arcidiacono, R.
    Baselga, M.
    Bellan, R.
    Boscardin, M.
    Cenna, F.
    Betta, G. F. Dalla
    Fernandez-Martinez, P.
    Ferrero, M.
    Flores, D.
    Galloway, Z.
    Greco, V.
    Hidalgo, S.
    Marchetto, F.
    Monaco, V.
    Obertino, M.
    Pancheri, L.
    Paternoster, G.
    Picerno, A.
    Pellegrini, G.
    Quirion, D.
    Ravera, F.
    Sacchi, R.
    Sadrozinski, H. F. -W.
    Seiden, A.
    Solano, A.
    Spencer, N.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 796 : 141 - 148
  • [8] Ultra-Fast Silicon Detectors for 4D tracking
    Sola, V.
    Arcidiacono, R.
    Bellora, A.
    Cartiglia, N.
    Cenna, F.
    Cirio, R.
    Durando, S.
    Ferrero, M.
    Galloway, Z.
    Gruey, B.
    Freeman, P.
    Mashayekhi, M.
    Mandurrino, M.
    Monaco, V.
    Mulargia, R.
    Obertino, M. M.
    Ravera, F.
    Sacchi, R.
    Sadrozinski, H. F-W.
    Seiden, A.
    Spencer, N.
    Staiano, A.
    Wilder, M.
    Woods, N.
    Zatserklyaniy, A.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [9] 4D tracking with ultra-fast silicon detectors
    Sadrozinski, Hartmut F-W
    Seiden, Abraham
    Cartiglia, Nicolo
    REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (02)
  • [10] Articulated Distance Fields for Ultra-Fast Tracking of Hands Interacting
    Taylor, Jonathan
    Tankovich, Vladimir
    Tang, Danhang
    Cemkeskin
    Kim, David
    Davidson, Philip
    Kowdle, Adarsh
    Izadi, Shahram
    ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06):