Hierarchical Bayesian Modeling and Markov Chain Monte Carlo Sampling for Tuning-Curve Analysis

被引:27
|
作者
Cronin, Beau [1 ]
Stevenson, Ian H. [2 ]
Sur, Mriganka [1 ]
Koerding, Konrad P. [2 ]
机构
[1] MIT, Dept Brain & Cognit Sci, Picower Inst Learning & Memory, Cambridge, MA 02139 USA
[2] Northwestern Univ, Dept Physiol, Rehabil Inst Chicago, Chicago, IL 60611 USA
关键词
ORIENTATION SELECTIVITY; RECEPTIVE FIELDS; MACAQUE V1; DYNAMICS; NEURONS; ADAPTATION; PLASTICITY; LIKELIHOOD; REVEALS; CORTEX;
D O I
10.1152/jn.00379.2009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cronin B, Stevenson IH, Sur M, Kording KP. Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning-curve analysis. J Neurophysiol 103: 591-602, 2010. First published November 4, 2009; doi: 10.1152/jn.00379.2009. A central theme of systems neuroscience is to characterize the tuning of neural responses to sensory stimuli or the production of movement. Statistically, we often want to estimate the parameters of the tuning curve, such as preferred direction, as well as the associated degree of uncertainty, characterized by error bars. Here we present a new sampling-based, Bayesian method that allows the estimation of tuning-curve parameters, the estimation of error bars, and hypothesis testing. This method also provides a useful way of visualizing which tuning curves are compatible with the recorded data. We demonstrate the utility of this approach using recordings of orientation and direction tuning in primary visual cortex, direction of motion tuning in primary motor cortex, and simulated data.
引用
收藏
页码:591 / 602
页数:12
相关论文
共 50 条
  • [1] Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis
    Cruz, Ivette Raices
    Lindstroem, Johan
    Troffaes, Matthias C. M.
    Sahlin, Ullrika
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [2] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2016, 23 (04) : 549 - 564
  • [3] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Daniel Turek
    Perry de Valpine
    Christopher J. Paciorek
    Environmental and Ecological Statistics, 2016, 23 : 549 - 564
  • [4] Bayesian object matching with hierarchical priors and Markov chain Monte Carlo
    Tamminen, T
    Lampinen, J
    BAYESIAN STATISTICS 7, 2003, : 691 - 700
  • [5] Bayesian penalized empirical likelihood and Markov Chain Monte Carlo sampling
    Chang, Jinyuan
    Tang, Cheng Yong
    Zhu, Yuanzheng
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2025,
  • [6] Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
    Howison, Mark
    Zapata, Felipe
    Edwards, Erika J.
    Dunn, Casey W.
    PLOS ONE, 2014, 9 (06):
  • [7] Feature selection by Markov chain Monte Carlo sampling - A Bayesian approach
    Egmont-Petersen, M
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 1034 - 1042
  • [8] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    Environmental Fluid Mechanics, 2008, 8 : 579 - 595
  • [9] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Vrugt, Jasper A.
    Diks, Cees G. H.
    Clark, Martyn P.
    ENVIRONMENTAL FLUID MECHANICS, 2008, 8 (5-6) : 579 - 595
  • [10] ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE
    Beck, James L.
    Zuev, Konstantin M.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (05) : 445 - 474