Nonexistence of invariant graphs in all supercritical energy levels of mechanical Lagrangians in T2

被引:1
|
作者
Ruggiero, Rafael O. [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Math, BR-22453 Rio De Janeiro, Brazil
来源
关键词
invariant graph; mechanical Lagrangian; critical level;
D O I
10.1007/s00574-006-0019-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (T-2, g) be a smooth Riemannian structure in the torus T-2. We show that given epsilon > 0 and any C-infinity function U : T-2 degrees -> R there exists a C-1 function U-epsilon with Lipschitz derivatives that is epsilon-C-0 close to U for which there are no continuous invariant graphs in any supercritical energy level of the mechanical Lagrangian L-epsilon : TT2 -> R given by L (p, v) = 2/1 g (upsilon, upsilon) - U-epsilon (p). We also show that given n is an element of N, the set of C-infinity potentials U : T-2 -> R for which there are no continuous invariant graphs in any supercritical energy level E <= n of L(p, upsilon) = 2/1g(upsilon, upsilon) - U(p) is C-0 dense in the set of C-infinity functions.
引用
收藏
页码:419 / 449
页数:31
相关论文
共 50 条
  • [1] Nonexistence of invariant graphs in all supercritical energy levels of mechanical Lagrangians in T2
    Rafael O. Ruggiero
    Bulletin of the Brazilian Mathematical Society, 2006, 37 : 419 - 449
  • [2] On the density of mechanical Lagrangians in T2 without continuous invariant graphs in all supercritical energy levels
    Ruggiero, Rafael O.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3): : 661 - 679
  • [3] Invariant subspaces of H2(T2) and L2(T2) preserving compatibility
    Burdak, Zbigniew
    Kosiek, Marek
    Pagacz, Patryk
    Slocinski, Marek
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1706 - 1719
  • [4] Certain invariant subspace structure of L2(T2)
    Ji, GX
    Ohwada, T
    Saito, KS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (08) : 2361 - 2368
  • [5] ON BEURLING TYPE INVARIANT SUBSPACES OF L2(T2) AND THEIR EQUIVALENCE
    GHATAGE, P
    MANDREKAR, V
    JOURNAL OF OPERATOR THEORY, 1988, 20 (01) : 83 - 89
  • [6] The nonexistence of regular near octagons with parameters (s, t, t2, t3) = (2,24,0,8)
    De Bruyn, Bart
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [7] Energy conditions for a T2 wormhole at the center
    Dzhunushaliev, Vladimir
    Folomeev, Vladimir
    Kleihaus, Burkhard
    Kunz, Jutta
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [8] Hamiltonicity in directed Toeplitz graphs Tn ⟨1, 2; t1, t2⟩
    Malik, Shabnam
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 78 : 434 - 449
  • [9] A quantum invariant of links in T2 x I with volume conjecture behavior
    Boninger, Joe
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (04): : 1891 - 1934
  • [10] CONSERVATIVE ANOSOV DIFFEOMORPHISMS OF T2 WITHOUT AN ABSOLUTELY CONTINUOUS INVARIANT MEASURE
    Kosloff, Zemer
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2021, 54 (01): : 69 - 131