Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery

被引:4
|
作者
Dahiya, Navdeep [1 ]
Yezzi, Anthony [1 ]
Piccinelli, Marina [2 ]
Garcia, Ernest [2 ]
机构
[1] Georgia Inst Technol, North Ave NW, Atlanta, GA 30332 USA
[2] Emory Univ, Sch Med, 101 Woodruff Circle, Atlanta, GA 30322 USA
来源
VIPIMAGE 2017 | 2018年 / 27卷
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-319-68195-5_123
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of epicardial and endocardial boundaries is a critical step in diagnosing cardiovascular function in heart patients. The manual tracing of organ contours in Computed Tomography Angiography (CTA) slices is subjective, time-consuming and impractical in clinical setting. We propose a novel multi-dimensional automatic edge detection algorithm based on shape priors and principal component analysis. Inspired by the work of Tsai et al. [3] and Yezzi et al. [1], we have developed a highly customized parametric model for implicit representations of segmenting curves (3D) for Left Ventricle (LV), Right Ventricle (RV), and Epicardium (Epi) used simultaneously to achieve myocardial segmentation. We have extended the Chan-Vese [4] image modeling framework to segment four regions simultaneously with high level constraints enabling the modeling of complex cardiac anatomical structures to automatically guide the segmentation of endo/epicardial boundaries. Test results on 30 short-axis CTA datasets show robust segmentation with error (mean +/- std mm) of (1.46 +/- 0.41), (2.06 +/- 0.65), (2.88 +/- 0.59) for LV, RV and Epi respectively.
引用
收藏
页码:1115 / 1124
页数:10
相关论文
共 50 条
  • [1] Integrated 3D anatomical model for automatic myocardial segmentation in cardiac CT imagery
    Dahiya, N.
    Yezzi, A.
    Piccinelli, M.
    Garcia, E.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2019, 7 (5-6): : 690 - 706
  • [2] Automatic segmentation of the prostate and rectum in 3D CT using anatomical constraints
    Chen, S.
    Lovelock, D. M.
    Radke, R. J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 72 (01): : S558 - S558
  • [3] Registration-based Automatic 3D Segmentation of Cardiac CT Images
    LI Li-hua
    YANG Rong-qian
    HUANG Yue-shan
    WU Xiao-ming
    ChineseJournalofBiomedicalEngineering, 2016, 25 (03) : 93 - 99
  • [4] Automatic 3D Aorta Segmentation in CT Images
    Duan, Xiaojie
    Zhang, Meisong
    Wang, Jianming
    Chen, Qingliang
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 49 - 54
  • [5] Automatic 3D Segmentation of Renal Cysts in CT
    Badura, Pawel
    Wieclawek, Wojciech
    Pycinski, Bartlomiej
    INFORMATION TECHNOLOGIES IN MEDICINE, ITIB 2016, VOL 1, 2016, 471 : 149 - 163
  • [6] Bone fragment segmentation from 3D CT imagery
    Shadid, Waseem G.
    Willis, Andrew
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 66 : 14 - 27
  • [7] Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes
    Zheng, Yefeng
    Georgescu, Bogdan
    Barbu, Adrian
    Scheuering, Michael
    Comaniciu, Dorin
    MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [8] AUTOMATIC SEGMENTATION OF CT SCANS OF THE LIVER FOR 3D VISUALIZATION
    GAO, L
    KUSZYK, BS
    FISHMAN, EK
    RADIOLOGY, 1995, 197 : 328 - 328
  • [9] A deformable model, incorporating expected structure information, for automatic 3D segmentation of complex anatomical structures
    Bulpitt, A
    Berry, E
    Boyle, R
    Stott, J
    Kessel, D
    CARS 2000: COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2000, 1214 : 572 - 577
  • [10] Semi-automatic segmentation and labelling of 3D brain anatomical structures
    Pratikakis, I
    Sahli, H
    Deklerck, R
    Cornelis, J
    PATRAS MEDICAL PHYSICS 99, 1999, : 269 - 275