Person re-identification based on attention mechanism and adaptive weighting

被引:0
|
作者
Wang, Yangping [1 ,3 ]
Li, Li [1 ]
Yang, Jingyu [1 ,2 ]
Dang, Jianwu [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Anning West Rd 88, Lanzhou 730070, Gansu, Peoples R China
[2] Gansu Prov Engn Res Ctr Artificial Intelligence &, Anning West Rd 88, Lanzhou 730070, Gansu, Peoples R China
[3] Gansu Prov Key Lab Syst Dynam & Reliabil Rail Tra, Anning West Rd 88, Lanzhou 730070, Gansu, Peoples R China
来源
DYNA | 2021年 / 96卷 / 02期
关键词
Person re-identification; Adaptive weight; Attention mechanism; Convolutional neural network; DESCRIPTOR; FEATURES; NETWORK;
D O I
10.6036/9981
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Owing to factors such as pose change, illumination condition, background clutter, and occlusion, person re-identification (re-ID) based on video frames is a challenging task. To utilize pixel-level saliency information and discriminative local body information of the image and improve re-ID accuracy in the case of complex pose change and viewpoint difference, a person re-ID network based on attention mechanism and adaptive weight was proposed in this study. Based on the detection of human key points, an attention mechanism was integrated to screen the discriminative information in various parts of the human body. The adaptive weighting method was adopted in the network, providing the extracted local features different weights according to the discriminative information of different human parts. The re-ID accuracy of the network model was verified by experiments. Results demonstrate that the proposed network model can accurately extract the features of discriminative regions in various parts of the human body by integrating the attention mechanism and adaptive region weight, thereby improving the performance of person re-ID. Our method is compared with current widely used person re-ID network models as AACN and HAC. On the Market-1501 dataset, the Rank-1 and mAP values are improved by 4.79% and 2.78% as well as 8% and 3.52%, respectively, and on the DukeMTMC-relD dataset, by 4.92% and 3.26% as well as 5.17% and 3.17%, respectively. Compared with the previous GLAD network model, Rank-1 and mAP values on two experimental datasets are increased by more than 2%. The proposed method provides a good approach to optimize the descriptor of pedestrians for person re-ID in complex environments.
引用
收藏
页码:186 / 193
页数:8
相关论文
共 50 条
  • [1] A Domain Adaptive Person Re-Identification Based on Dual Attention Mechanism and Camstyle Transfer
    Zhong, Chengyan
    Qi, Guanqiu
    Mazur, Neal
    Banerjee, Sarbani
    Malaviya, Devanshi
    Hu, Gang
    ALGORITHMS, 2021, 14 (12)
  • [2] Joint Attention Mechanism for Person Re-Identification
    Jiao, Shanshan
    Wang, Jiabao
    Hu, Guyu
    Pan, Zhisong
    Du, Lin
    Zhang, Jin
    IEEE ACCESS, 2019, 7 : 90497 - 90506
  • [3] End to End Person Re-Identification Based on Attention Mechanism
    Li, Yang
    Xu, Huahu
    Bian, Minjie
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2019), 2019, 646
  • [4] Domain generalization person re-identification based on attention mechanism
    Yu M.
    Li X.-B.
    Guo Y.-C.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (07): : 1721 - 1728
  • [5] Person re-identification method based on attention mechanism and CondConv
    Ji G.
    Wang R.
    Peng S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (02): : 655 - 662
  • [6] Adaptive Graph Attention Network in Person Re-Identification
    L. D. Duy
    P. D. Hung
    Pattern Recognition and Image Analysis, 2022, 32 : 384 - 392
  • [7] Adaptive Graph Attention Network in Person Re-Identification
    Duy, L. D.
    Hung, P. D.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (02) : 384 - 392
  • [8] Person Re-Identification Based on Attention Mechanism and Context Information Fusion
    Chen, Shengbo
    Zhang, Hongchang
    Lei, Zhou
    FUTURE INTERNET, 2021, 13 (03)
  • [9] Cross-resolution person re-identification based on attention mechanism
    Liao H.
    Xu X.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (03): : 605 - 612
  • [10] Domain adaptive person re-identification with noise optimization and dynamic weighting
    Wang, Zhengyang
    Ye, Xiufen
    Shang, Xue
    Guo, Shuxiang
    APPLIED SOFT COMPUTING, 2025, 174