On the Distribution of Limit Cycles in a Lienard System with a Nilpotent Center and a Nilpotent Saddle

被引:4
|
作者
Asheghi, R. [1 ]
Bakhshalizadeh, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 02期
关键词
Melnikov function; Abelian integrals; limit cycles; Lienard system; nilpotent center and saddle; ELLIPTIC HAMILTONIAN-SYSTEMS; ABELIAN-INTEGRALS; POLYNOMIAL SYSTEMS; HILBERT NUMBER; LOWER BOUNDS; PERTURBATIONS; BIFURCATION; DEGREE-4; ZEROS; LOOP;
D O I
10.1142/S0218127416500255
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the Abelian integral I(h) corresponding to the following Lienard system, (x) over dot = y, (y) over dot = x(3)(x - 1)(3) + epsilon(a + bx + cx(3) + x(5)) y, where 0 < epsilon << 1, a, b and c are real bounded parameters. By using the expansion of I(h) and a new algebraic criterion developed in [ Grau et al., 2011], it will be shown that the sharp upper bound of the maximal number of isolated zeros of I(h) is 4. Hence, the above system can have at most four limit cycles bifurcating from the corresponding period annulus. Moreover, the configuration (distribution) of the limit cycles is also determined. The results obtained are new for this kind of Lienard system.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Limit cycles in a Lienard system with a cusp and a nilpotent saddle of order 7
    Asheghi, R.
    Bakhshalizadeh, A.
    CHAOS SOLITONS & FRACTALS, 2015, 73 : 120 - 128
  • [2] ON THE LIMIT CYCLES OF A KIND OF LIENARD SYSTEM WITH A NILPOTENT CENTER UNDER PERTURBATIONS
    Yang, Junmin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (03): : 325 - 339
  • [3] BIFURCATION OF LIMIT CYCLES IN A CLASS OF LIENARD SYSTEMS WITH A CUSP AND NILPOTENT SADDLE
    Zaghian, Ali
    Kazemi, Rasool
    Zangeneh, Hamid R. Z.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 95 - 106
  • [4] Poincare Bifurcation of Limit Cycles from a Lienard System with a Homoclinic Loop Passing through a Nilpotent Saddle
    Wei, Minzhi
    Cai, Junning
    Zhu, Hongying
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [5] LIMIT CYCLE BIFURCATIONS OF A KIND OF LIENARD SYSTEM WITH A HYPOBOLIC SADDLE AND A NILPOTENT CUSP
    Yang, Junmin
    Liang, Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (03): : 515 - 526
  • [6] Bifurcation of Limit Cycles for Some Lienard Systems with a Nilpotent Singular Point
    Yang, Junmin
    Sun, Xianbo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):
  • [7] BIFURCATIONS OF LIMIT CYCLES AND CENTER PROBLEM FOR A CLASS OF CUBIC NILPOTENT SYSTEM
    Liu, Yirong
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (08): : 2579 - 2584
  • [8] Limit cycles appearing from a generalized heteroclinic loop with a cusp and a nilpotent saddle
    Xiong, Yanqin
    Han, Maoan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 : 575 - 607
  • [9] Polynomial Lienard systems with a nilpotent global center
    Garcia, Isaac A.
    Llibre, Jaume
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3625 - 3636
  • [10] Center Conditions and Bifurcation of Limit Cycles at Nilpotent Critical Point in a Quintic Lyapunov System
    Feng LI Yin Lai JIN School of Science Linyi University Shandong P R China
    数学研究与评论, 2011, 31 (05) : 937 - 945