A spectral bundle method for semidefinite programming

被引:244
|
作者
Helmberg, C
Rendl, F
机构
[1] Konrad Zuse Zentrum Informat Tech Berlin, D-14195 Berlin, Germany
[2] Univ Klagenfurt, Inst Math, A-9020 Klagenfurt, Austria
关键词
eigenvalue optimization; convex optimization; semidefinite programming; proximal bundle method; large-scale problems;
D O I
10.1137/S1052623497328987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A central drawback of primal-dual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically, semidefinite relaxations arising in combinatorial applications have sparse and well-structured cost and coefficient matrices of huge order. We present a method that allows us to compute acceptable approximations to the optimal solution of large problems within reasonable time. Semidefinite programming problems with constant trace on the primal feasible set are equivalent to eigenvalue optimization problems. These are convex nonsmooth programming problems and can be solved by bundle methods. We propose replacing the traditional polyhedral cutting plane model constructed from subgradient information by a semidefinite model that is tailored to eigenvalue problems. Convergence follows from the traditional approach but a proof is included for completeness. We present numerical examples demonstrating the efficiency of the approach on combinatorial examples.
引用
收藏
页码:673 / 696
页数:24
相关论文
共 50 条
  • [1] An inexact spectral bundle method for convex quadratic semidefinite programming
    Huiling Lin
    Computational Optimization and Applications, 2012, 53 : 45 - 89
  • [2] An inexact spectral bundle method for convex quadratic semidefinite programming
    Lin, Huiling
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (01) : 45 - 89
  • [3] A Spectral Bundle Method for Sparse Semidefinite Programs
    Mojtahedi, Hesam
    Liao, Feng-Yi
    Zheng, Yang
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 8254 - 8259
  • [4] A proximal-projection bundle method for Lagrangian relaxation, including semidefinite programming
    Kiwiel, Krzysztof C.
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (04) : 1015 - 1034
  • [5] Solving large structured semidefinite programs using an inexact spectral bundle method
    Miller, SA
    Smith, RS
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 5027 - 5032
  • [6] A subspace semidefinite programming for spectral graph partitioning
    Oliveira, S
    Stewart, D
    Soma, T
    COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 1058 - 1067
  • [7] A homotopy method for nonlinear semidefinite programming
    Yang, Li
    Yu, Bo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (01) : 81 - 96
  • [8] A homotopy method for nonlinear semidefinite programming
    Li Yang
    Bo Yu
    Computational Optimization and Applications, 2013, 56 : 81 - 96
  • [9] A REVISED SEQUENTIAL QUADRATIC SEMIDEFINITE PROGRAMMING METHOD FOR NONLINEAR SEMIDEFINITE OPTIMIZATION
    Okabe, Kosuke
    Yamakawa, Yuya
    Fukuda, Ellen hidemi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (10) : 7777 - 7794
  • [10] A load dispatch method using fractional programming and semidefinite programming
    Kobayashi, Yasuhiro
    Sawa, Toshiyuki
    Furukawa, Toshiyuki
    Kawamoto, Shigeru
    Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 2002, 138 (02): : 49 - 58