Finite volume solvers for the shallow water equations using matrix radial basis function reconstruction

被引:0
|
作者
Bonaventura, L. [1 ]
Miglio, E. [1 ]
Saleri, F. [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, Pzza Leonardo Da Vinci 32, I-20133 Milan, Italy
关键词
D O I
10.1007/978-3-540-34288-5_13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The accuracy of low order numerical methods for the shallow water equations is improved by using vector reconstruction techniques based on matrix valued radial basis functions. Applications to geophysical fluid dynamics problems show that these reconstruction techniques allow to maintain important discrete conservation properties while greatly reducing the error with respect to low order discretizations.
引用
收藏
页码:207 / +
页数:2
相关论文
共 50 条
  • [1] A radial basis function method for the shallow water equations on a sphere
    Flyer, Natasha
    Wright, Grady B.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106): : 1949 - 1976
  • [2] Compactly supported radial basis functions for shallow water equations
    Wong, SM
    Hon, YC
    Golberg, MA
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 127 (01) : 79 - 101
  • [3] Finite Volume Multilevel Approximation of the Shallow Water Equations
    Bousquet, Arthur
    Marion, Martine
    Temam, Roger
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (01) : 1 - 28
  • [4] Adaptive finite volume approximation of the shallow water equations
    Felcman, J.
    Kadrnka, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (07) : 3354 - 3366
  • [5] Finite Volume Multilevel Approximation of the Shallow Water Equations
    Arthur BOUSQUET
    Martine MARION
    Roger TEMAM
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (01) : 1 - 28
  • [6] Finite Volume Multilevel Approximation of the Shallow Water Equations
    Arthur Bousquet
    Martine Marion
    Roger Temam
    Chinese Annals of Mathematics, Series B, 2013, 34 : 1 - 28
  • [7] A simple finite volume method for the shallow water equations
    Benkhaldoun, Fayssal
    Seaid, Mohammed
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) : 58 - 72
  • [8] SOLUTION OF TWO-DIMENSIONAL SHALLOW WATER EQUATIONS BY A LOCALIZED RADIAL BASIS FUNCTION COLLOCATION METHOD
    Bustamante, Carlos A.
    Power, Henry
    Nieto, Cesar
    Florez, Whady F.
    PROCEEDINGS OF THE 1ST PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS AND XI ARGENTINE CONGRESS ON COMPUTATIONAL MECHANICS, 2015, : 775 - 786
  • [9] New finite volume method for solving shallow water equations
    Zhang, Tingfang
    Duan, Xiaoning
    Journal of Hydrodynamics, 1993, 5 (02) : 13 - 18
  • [10] A NEW FINITE VOLUME METHOD FOR SOLVING SHALLOW WATER EQUATIONS
    Zhang Ting-fang Duan Xiao ning Dalian University of Technology
    Journal of Hydrodynamics(SerB)., 1993, (02) : 13 - 18