Inverse Source Problem for a Wave Equation with Final Observation Data

被引:3
|
作者
Jiang, Daijun [1 ,2 ]
Liu, Yikan [3 ]
Yamamoto, Masahiro [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
HYPERBOLIC PROBLEM; STABILITY;
D O I
10.1007/978-981-10-2633-1_11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter, we study the inverse problem on recovering a spatial component of the source term in a wave equation by the final observation data. Employing the analytic Fredholm theory, we establish a generic well-posedness result concerning the uniqueness of our inverse source problem. Numerically, by treating a corresponding minimization problem, we investigate the variational equation for the minimizer and develop an iterative thresholding algorithm. One- and two-dimensional numerical experiments are implemented to demonstrate the robustness and accuracy of the proposed algorithm.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 50 条
  • [1] INVERSE SOURCE PROBLEM FOR WAVE EQUATION AND GPR DATA INTERPRETATION PROBLEM
    Mukanova, B. G.
    Romanov, V. G.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2016, 4 (03): : 15 - 28
  • [2] An inverse source problem for the wave equation
    Ton, BA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (03) : 269 - 284
  • [3] On the Inverse Source Problem for the Wave Equation
    Demchenko M.N.
    Journal of Mathematical Sciences, 2017, 224 (1) : 69 - 78
  • [4] AN INVERSE SOURCE PROBLEM FOR THE STOCHASTIC WAVE EQUATION
    Feng, Xiaoli
    Zhao, Meixia
    Li, Peijun
    Wang, Xu
    INVERSE PROBLEMS AND IMAGING, 2022, 16 (02) : 397 - 415
  • [5] INVERSE SOURCE PROBLEM WITH A FINAL OVERDETERMINATION FOR A FRACTIONAL DIFFUSION EQUATION
    Sakamoto, Kenichi
    Yamamoto, Masahiro
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (04) : 509 - 518
  • [6] Inverse Source Problem for the Poisson Equation with Final and Integral Conditions
    Nam, Bui Duc
    Thach, Tran Ngoc
    Tien, Nguyen Van
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (03)
  • [7] INVERSE SOURCE IDENTIFICATION PROBLEM FOR THE WAVE EQUATION: AN APPLICATION FOR INTERPRETING GPR DATA
    Mukanova, B. G.
    Iskakov, K. T.
    Kembay, A. S.
    Boranbaev, S. A.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2020, 8 (03): : 78 - 91
  • [8] Inverse Problem for the Wave Equation with a White Noise Source
    Tapio Helin
    Matti Lassas
    Lauri Oksanen
    Communications in Mathematical Physics, 2014, 332 : 933 - 953
  • [9] An inverse source problem for a damped wave equation with memory
    Seliga, Lukas
    Slodicka, Marian
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (02): : 111 - 122
  • [10] Inverse moving point source problem for the wave equation
    Al Jebawy, Hanin
    Elbadia, Abdellatif
    Triki, Faouzi
    INVERSE PROBLEMS, 2022, 38 (12)