Multi-Scale Collaborative Network for Human Pose Estimation

被引:1
|
作者
Guo, Chunsheng [1 ]
Zhou, Jialuo [1 ]
Du, Wenlong [1 ]
Zhang, Xuguang [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou, Zhejiang, Peoples R China
关键词
Human pose estimation; collaborative network; multi-scale; adaptive weighted optimization;
D O I
10.1142/S0219843619410032
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Human pose estimation is a fundamental but challenging task in computer vision. The estimation of human pose mainly depends on the global information of the keypoint type and the local information of the keypoint location. However, the consistency of the cascading process makes it difficult for each stacking network to form a differentiation and collaboration mechanism. In order to solve these problems, this paper introduces a new human pose estimation framework called Multi-Scale Collaborative( MSC) network. The pre-processing network forms feature maps of different sizes, and dispatches them to various locations of the stack network, with small-scale features reaching the front-end stacking network and large-scale features reaching the back-end stacking network. A new loss function is proposed for MSC network. Different keypoints have different weight coefficients of loss function at different scales, and the keypoint weight coefficients are dynamically adjusted from the top hourglass network to the bottom hourglass network. Experimental results show that the proposed method is competitive in MPII and LSP challenge leaderboard among the state-of-the-art methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] MULTI-SCALE SUPERVISED NETWORK FOR HUMAN POSE ESTIMATION
    Ke, Lipeng
    Chang, Ming-Ching
    Qi, Honggang
    Lyu, Siwei
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 564 - 568
  • [2] Multi-Scale Feature Refined Network for Human Pose Estimation
    Yang, Qiaoning
    Ji, Xiaodong
    Yang, Xiuhui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [3] Hand pose estimation with multi-scale network
    Zhongxu Hu
    Youmin Hu
    Bo Wu
    Jie Liu
    Dongmin Han
    Thomas Kurfess
    Applied Intelligence, 2018, 48 : 2501 - 2515
  • [4] Hand pose estimation with multi-scale network
    Hu, Zhongxu
    Hu, Youmin
    Wu, Bo
    Liu, Jie
    Han, Dongmin
    Kurfess, Thomas
    APPLIED INTELLIGENCE, 2018, 48 (08) : 2501 - 2515
  • [5] Multi-Scale Structure-Aware Network for Human Pose Estimation
    Ke, Lipeng
    Chang, Ming-Ching
    Qi, Honggang
    Lyu, Siwei
    COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 : 731 - 746
  • [6] Multi-scale Attention Aided Multi-Resolution Network for Human Pose Estimation
    Selvam, Srinika
    Mishra, Deepak
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 461 - 472
  • [7] Selective Learning of Human Pose Estimation Based on Multi-Scale Convergence Network
    Liu, Wenkai
    Qin, Cuizhu
    Wu, Menglong
    Bai, Wenle
    Dong, Hongxia
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 1081 - 1084
  • [8] Multi-Scale Contrastive Learning for Human Pose Estimation
    Bao, Wenxia
    Lin, An
    Huang, Hua
    Yang, Xianjun
    Chen, Hemu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (10) : 1332 - 1341
  • [9] A lightweight pose estimation network with multi-scale receptive field
    Li, Shuo
    Dai, Ju
    Chen, Zhangmeng
    Pan, Junjun
    VISUAL COMPUTER, 2023, 39 (08): : 3429 - 3440
  • [10] A lightweight pose estimation network with multi-scale receptive field
    Shuo Li
    Ju Dai
    Zhangmeng Chen
    Junjun Pan
    The Visual Computer, 2023, 39 : 3429 - 3440