PLANES OF MATRICES OF CONSTANT RANK AND GLOBALLY GENERATED VECTOR BUNDLES

被引:4
|
作者
Boralevi, Ada [1 ]
Mezzetti, Emilia [2 ]
机构
[1] Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Trieste, Dipartimento Matemat & Geosci, Sez Matemat & Informat, I-34127 Trieste, Italy
关键词
Skew-symmetric matrices; constant rank; globally generated vector bundles; SKEW-SYMMETRIC MATRICES; LINEAR-SPACES;
D O I
10.5802/aif.2983
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of determining all pairs (c(1), c(2)) of Chern classes of rank 2 bundles that are cokernel of a skew-symmetric matrix of linear forms in 3 variables, having constant rank 2c(1) and size 2c(1) +2. We completely solve the problem in the "stable" range, i.e. for pairs with c(1)(2)-4c(2) < 0, proving that the additional condition c(2) <= ((c1+1)(2)) is necessary and sufficient. For c(1)(2)-4c(2) >= 0, we prove that there exist globally generated bundles, some even defining an embedding of P-2 in a Grassmannian, that cannot correspond to a matrix of the above type. This extends previous work on c(1) <= 3.
引用
收藏
页码:2069 / 2089
页数:21
相关论文
共 50 条