PLANES OF MATRICES OF CONSTANT RANK AND GLOBALLY GENERATED VECTOR BUNDLES
被引:4
|
作者:
Boralevi, Ada
论文数: 0引用数: 0
h-index: 0
机构:
Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, ItalyScuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
Boralevi, Ada
[1
]
Mezzetti, Emilia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Trieste, Dipartimento Matemat & Geosci, Sez Matemat & Informat, I-34127 Trieste, ItalyScuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
Mezzetti, Emilia
[2
]
机构:
[1] Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
We consider the problem of determining all pairs (c(1), c(2)) of Chern classes of rank 2 bundles that are cokernel of a skew-symmetric matrix of linear forms in 3 variables, having constant rank 2c(1) and size 2c(1) +2. We completely solve the problem in the "stable" range, i.e. for pairs with c(1)(2)-4c(2) < 0, proving that the additional condition c(2) <= ((c1+1)(2)) is necessary and sufficient. For c(1)(2)-4c(2) >= 0, we prove that there exist globally generated bundles, some even defining an embedding of P-2 in a Grassmannian, that cannot correspond to a matrix of the above type. This extends previous work on c(1) <= 3.