Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form

被引:14
|
作者
Jung, Seoung Dal [1 ]
机构
[1] Jeju Natl Univ, Dept Math, Cheju 690756, South Korea
关键词
transverse spin foliation; basic Dirac operator; minimal foliation;
D O I
10.1016/j.geomphys.2006.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a compact Riemannian manifold M with a transverse spin foliation F of codimension q >= 3, if M admits a non-trivial basic harmonic 1-form omega, then any eigenvalue lambda of the basic Dirac operator satisfies the inequality lambda(2) >= q-1/(4(Q-2)) inf(M) (sigma(del) + vertical bar kappa vertical bar(2)), where sigma(del) is the transversal scalar Curvature and kappa is the mean curvature form of F. I it the limiting case, omega is minimal and co is parallel. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1239 / 1246
页数:8
相关论文
共 12 条