Investigation of asphaltene-derived formation damage and nano-confinement on the performance of CO2 huff-n-puff in shale oil reservoirs

被引:25
|
作者
Lee, Ji Ho [1 ]
Lee, Kun Sang [1 ]
机构
[1] Hanyang Univ, Dept Earth Resources & Environm Engn, Seoul 04763, South Korea
关键词
Asphaltene; Nano-confinement; CO2; huff-n-puff; Permeability reduction; Wettability alteration; Shale reservoir; CARBON-DIOXIDE STORAGE; CAPILLARY-PRESSURE; PRECIPITATION; INJECTION; RECOVERY; DEPOSITION; SIMULATION; GAS; EOR; MECHANISMS;
D O I
10.1016/j.petrol.2019.106304
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, the behavior of asphaltene formation and nano-confinement during the CO2 huff-n-puff process in liquid-rich shale reservoirs is investigated. Asphaltene precipitation and deposition in the pore volume of shale formation from mixing between oil and CO2 could cause formation damage, which reduces the permeability and/or changes the rock surface condition toward more oil-wet. In addition, the nano-confinement effect changes the phase behavior of the fluid affecting the asphaltene formation in tight shale formations. With the development of a reservoir simulation model that incorporates both asphaltene formation and the nano-confinement effect, this study quantifies the effects of asphaltene deposition and nano-confinement on shale oil production of CO2 huff-n-puff. While ignoring the permeability reduction and wettability alteration due to asphaltene deposition, the nano-confinement effect increases the shale oil production by up to 42% during the CO2 huff-n-puff process. However, the nano-confinement effect increases the asphaltene precipitation and deposition in nano-scaled tight formation. On incorporating the formation damage due to asphaltene deposition, more deposited asphaltene due to nano-confinement effect decreases the oil production by 4%. This study clarifies that the effects of asphaltene formation and nano-confinement should be taken into consideration for an accurate prediction of hydrocarbon production during CO2 huff-n-puff in tight shale formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Comprehensive modeling of CO2 Huff-n-Puff in asphaltene-damaged shale reservoir with aqueous solubility and nano-confinement
    Lee, Ji Ho
    Jeong, Moon Sik
    Lee, Kun Sang
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 90 : 232 - 243
  • [2] Geochemical insights for CO2 huff-n-puff process in shale oil reservoirs
    Chen, Yongqiang
    Sari, Ahmad
    Zeng, Lingping
    Saeedi, Ali
    Xie, Quan
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 307
  • [3] Asphaltene deposition and permeability impairment in shale reservoirs during CO2 huff-n-puff EOR process
    Li, Lei
    Su, Yuliang
    Lv, Yuting
    Tu, Jiawei
    PETROLEUM SCIENCE AND TECHNOLOGY, 2020, 38 (04) : 384 - 390
  • [4] Investigation of asphaltene deposition mechanisms during CO2 huff-n-puff injection in Eagle Ford shale
    Shen, Ziqi
    Sheng, James J.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2017, 35 (20) : 1960 - 1966
  • [5] Diffusion Effect on Shale Oil Recovery by CO2 Huff-n-Puff
    Peng, Zesen
    Sheng, J.
    ENERGY & FUELS, 2023, 37 (04) : 2774 - 2790
  • [6] Performance Evaluation of CO2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs
    Meng, Xingbang
    Meng, Zhan
    Ma, Jixiang
    Wang, Tengfei
    ENERGIES, 2019, 12 (01)
  • [7] Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs
    Zuloaga, Pavel
    Yu, Wei
    Miao, Jijun
    Sepehrnoori, Kamy
    ENERGY, 2017, 134 : 181 - 192
  • [8] LOWER LIMITS OF COUPLING PHYSICAL PROPERTIES OF SHALE OIL RESERVOIRS FOR THE APPLICATION OF CO2 HUFF-N-PUFF
    Wang, Peng
    Huang, Shijun
    Zhao, Fenglan
    ENERGY PRODUCTION AND MANAGEMENT IN THE 21ST CENTURY V: The Quest for Sustainable Energy, 2022, 255 : 3 - 13
  • [9] Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs
    Pu, Wanfen
    Wei, Bing
    Jin, Fayang
    Li, Yibo
    Jia, Hu
    Liu, Penggang
    Tang, Zhijuan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 111 : 269 - 276
  • [10] The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol
    Shang, Shengxiang
    Dong, Mingzhe
    Gong, Houjian
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108