Almost sure existence of global weak solutions for incompressible MHD equations in negative-order Sobolev space

被引:4
|
作者
Du, Lihuai [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible magnetohydrodynamics equations; Negative-order Sobolev space; Almost sure existence; NAVIER-STOKES EQUATIONS; DATA CAUCHY-THEORY; WAVE-EQUATIONS; PARTIAL REGULARITY; WELL-POSEDNESS; PROOF;
D O I
10.1016/j.jde.2017.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the Cauchy problem of the incompressible Magnetohydrodynamics (MHD) equations in the periodic space domain T-N, where N >= 2. After a suitable randomization to the initial data, we obtain the almost sure existence of global weak solutions with the initial data in H-s(T-N), s epsilon (-1, 0). Specially, the global weak solution is unique when N = 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1611 / 1642
页数:32
相关论文
共 50 条