Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad

被引:86
|
作者
Bassan, A [1 ]
Borowski, T [1 ]
Siegbahn, PEM [1 ]
机构
[1] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden
关键词
D O I
10.1039/b408340g
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Density functional theory with the B3LYP hybrid functional has been used to study the mechanisms for dioxygen activation by four families of mononuclear non-heme iron enzymes: alpha-ketoacid-dependent dioxygenases, tetrahydrobiopterin-dependent hydroxylases, extradiol dioxygenases, and Rieske dioxygenases. These enzymes have a common active site with a ferrous ion coordinated to two histidines and one carboxylate group (aspartate or glutamate). In contrast to the heme case, this type of weak field environment always leads to a high-spin ground state. With the exception of the Rieske dioxygenases, which have an electron source outside the active site, the dioxygen activation process passes through the formation of a bridging-peroxide species, which then undergoes O-O bond cleavage finally leading to the four electron reduction of O-2. In the case of tetrahydrobiopterin- and alpha-ketoacid-dependent enzymes, the O-O heterolysis yields a high-valent iron-oxo species, which is capable of performing a two-electron oxidation chemistry on various organic substrates. For the other two families of enzymes (extradiol dioxygenases and Rieske dioxygenases) the substrate oxidation and the O-O bond cleavage are found to be coupled. In the extradiol dioxygenases the product of the O-O bond cleavage is a ferric iron with an oxy-substrate with a mixture of radical and anionic character, which is essential for the selectivity of the catechol cleavage.
引用
收藏
页码:3153 / 3162
页数:10
相关论文
共 49 条