QoE-Based Task Offloading With Deep Reinforcement Learning in Edge-Enabled Internet of Vehicles

被引:85
|
作者
He, Xiaoming [1 ]
Lu, Haodong [2 ]
Du, Miao [2 ]
Mao, Yingchi [1 ]
Wang, Kun [3 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing 210098, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing 210003, Peoples R China
[3] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Task analysis; Quality of experience; Servers; Training; Computational modeling; Energy consumption; Convergence; Internet of vehicles (IoV); edge; task offloading; deep deterministic policy gradients (DDPG); QoE; RESOURCE-ALLOCATION;
D O I
10.1109/TITS.2020.3016002
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the transportation industry, task offloading services of edge-enabled Internet of Vehicles (IoV) are expected to provide vehicles with the better Quality of Experience (QoE). However, the various status of diverse edge servers and vehicles, as well as varying vehicular offloading modes, make a challenge of task offloading service. Therefore, to enhance the satisfaction of QoE, we first introduce a novel QoE model. Specifically, the emerging QoE model restricted by the energy consumption: 1) intelligent vehicles equipped with caching spaces and computing units may work as carriers; 2) various computational and caching capacities of edge servers can empower the offloading; and 3) unpredictable routings of the vehicles and edge servers can lead to diverse information transmission. We then propose an improved deep reinforcement learning (DRL) algorithm named PS-DDPG with the prioritized experience replay (PER) and the stochastic weight averaging (SWA) mechanisms based on deep deterministic policy gradients (DDPG) to seek an optimal offloading mode, saving energy consumption. Specifically, the PER scheme is proposed to enhance the availability of the experience replay buffer, thus accelerating the training. Moreover, reducing the noise in the training process and thus stabilizing the rewards, the SWA scheme is introduced to average weights. Extensive experiments certify the better performance, i.e., stability and convergence, of our PS-DDPG algorithm compared to existing work. Moreover, the experiments indicate that the QoE value can be improved by the proposed algorithm.
引用
收藏
页码:2252 / 2261
页数:10
相关论文
共 50 条
  • [1] QoE-Based Cooperative Task Offloading with Deep Reinforcement Learning in Mobile Edge Networks
    He, Xiaoming
    Lu, Haodong
    Huang, Huawei
    Mao, Yingchi
    Wang, Kun
    Guo, Song
    IEEE WIRELESS COMMUNICATIONS, 2020, 27 (03) : 111 - 117
  • [2] Qoe-guaranteed distributed offloading decision via partially observable deep reinforcement learning for edge-enabled Internet of Things
    Jiaxin Hou
    Yingbo Wu
    Junpeng Cai
    Zhiwen Zhou
    Neural Computing and Applications, 2023, 35 : 21603 - 21619
  • [3] Qoe-guaranteed distributed offloading decision via partially observable deep reinforcement learning for edge-enabled Internet of Things
    Hou, Jiaxin
    Wu, Yingbo
    Cai, Junpeng
    Zhou, Zhiwen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21603 - 21619
  • [4] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Zhang, Degan
    Cao, Lixiang
    Zhu, Haoli
    Zhang, Ting
    Du, Jinyu
    Jiang, Kaiwen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 1175 - 1187
  • [5] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Degan Zhang
    Lixiang Cao
    Haoli Zhu
    Ting Zhang
    Jinyu Du
    Kaiwen Jiang
    Cluster Computing, 2022, 25 : 1175 - 1187
  • [6] Edge QoE: Computation Offloading With Deep Reinforcement Learning for Internet of Things
    Lu, Haodong
    He, Xiaoming
    Du, Miao
    Ruan, Xiukai
    Sun, Yanfei
    Wang, Kun
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9255 - 9265
  • [7] Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles
    Wang, Jianxi
    Wang, Liutao
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,
  • [8] Task Offloading and Resource Allocation for Edge-Enabled Mobile Learning
    Yang, Ziyan
    Zhong, Shaochun
    CHINA COMMUNICATIONS, 2023, 20 (04) : 326 - 339
  • [9] DRLD-SP: A Deep-Reinforcement-Learning-Based Dynamic Service Placement in Edge-Enabled Internet of Vehicles
    Talpur, Anum
    Gurusamy, Mohan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (08): : 6239 - 6251
  • [10] Task Offloading and Resource Allocation for Edge-Enabled Mobile Learning
    Ziyan Yang
    Shaochun Zhong
    China Communications, 2023, 20 (04) : 326 - 339