Stability properties of stochastic maximal LP-regularity

被引:12
|
作者
Agresti, Antonio [1 ]
Veraar, Mark [2 ]
机构
[1] Sapienza Univ Rome, Dept Math Guido Castelnuovo, Ple A Moro 5, I-00185 Rome, Italy
[2] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
关键词
Stochastic maximal regularity; Analytic semigroup; Sobolev spaces; Temporal weights; FOURIER MULTIPLIER THEOREMS; PARABOLIC EVOLUTION-EQUATIONS; SINGULAR INTEGRAL-OPERATORS; VALUED BESOV-SPACES; WEISS CONJECTURE; INTERPOLATION; EMBEDDINGS; TRACES;
D O I
10.1016/j.jmaa.2019.123553
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider L-P-regularity estimates for solutions to stochastic evolution equations, which is called stochastic maximal L-P-regularity. Our aim is to find a theory which is analogously to Dore's theory for deterministic evolution equations. He has shown that maximal L-P-regularity is independent of the length of the time interval, implies analyticity and exponential stability of the semigroup, is stable under perturbation and many more properties. We show that the stochastic versions of these results hold. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] STOCHASTIC MAXIMAL Lp-REGULARITY
    van Neerven, Jan
    Veraar, Mark
    Weis, Lutz
    ANNALS OF PROBABILITY, 2012, 40 (02): : 788 - 812
  • [2] MAXIMAL Lp-REGULARITY FOR STOCHASTIC EVOLUTION EQUATIONS
    van Neerven, Jan
    Veraar, Mark
    Weis, Lutz
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) : 1372 - 1414
  • [3] On maximal LP-regularity
    Bernicot, Frederic
    Zhao, Jiman
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) : 2561 - 2586
  • [4] Stability of stochastic maximal Lp-regularity under admissible observation operators
    Bounacer, Hamza
    Hadd, Said
    ARCHIV DER MATHEMATIK, 2025,
  • [5] Conical stochastic maximal Lp-regularity for 1 ≤ p < ∞
    Auscher, Pascal
    van Neerven, Jan
    Portal, Pierre
    MATHEMATISCHE ANNALEN, 2014, 359 (3-4) : 863 - 889
  • [6] Quasilinear Parabolic Stochastic Evolution Equations Via Maximal Lp-Regularity
    Luca Hornung
    Potential Analysis, 2019, 50 : 279 - 326
  • [7] A new approach to maximal Lp-Regularity
    Weis, L
    EVOLUTION EQUATIONS AND THEIR APPLICATIONS IN PHYSICAL AND LIFE SCIENCES, 2001, 215 : 195 - 214
  • [8] Muckenhoupt weights and maximal Lp-regularity
    R. Haller
    H. Heck
    M. Hieber
    Archiv der Mathematik, 2003, 81 : 422 - 430
  • [9] Muckenhoupt weights and maximal Lp-regularity
    Haller, R
    Heck, H
    Hieber, M
    ARCHIV DER MATHEMATIK, 2003, 81 (04) : 422 - 430
  • [10] Quasilinear Parabolic Stochastic Evolution Equations Via Maximal Lp-Regularity
    Hornung, Luca
    POTENTIAL ANALYSIS, 2019, 50 (02) : 279 - 326