ASSESSING THE PERFORMANCE OF A GREEN LIQUID FUEL HYPERGOLIC WITH HYDROGEN PEROXIDE IN A 50 N BIPROPELLANT THRUSTER

被引:5
作者
Maschio, Leandro Jose [1 ]
de Araujo, Emmanuel Peres [2 ]
Ferroni Pereira, Luis Gustavo [3 ]
Gouvea, Leonardo Henrique [4 ]
Vieira, Ricardo [1 ]
机构
[1] Natl Inst Space Res, Combust & Prop Lab, BR-12630000 Cachoeira Paulista, SP, Brazil
[2] Univ Sao Paulo, Lorena Sch Engn, Mat Engn Dept, BR-12602810 Lorena, SP, Brazil
[3] Aeronaut Inst Technol, Chem Dept, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[4] Aeronaut Inst Technol, Aeronaut & Aerosp Engn Dept, BR-12228900 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
hydrogen peroxide; liquid propulsion; hypergolic; green propellants; monoethanolamine; ethanol; PROPELLANTS;
D O I
10.1615/IntJEnergeticMaterialsChemProp.2020032684
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The last decades have witnessed an increasing interest in the development of green propellants for propulsion systems. Particularly in the low thrust domain, where a feasible alternative to the storable liquid bipropellant system hydrazine - nitrogen tetroxide is yet to be fully demonstrated, the application of green hypergolic propellants such as ethanol and H2O2 90 wt% appears to be a promising one. This work presents the design and firing test of a 50 N bipropellant thruster based on the H2O2 90 wt% - monoethanolamine-ethanol hypergolic pair catalyzed by Cu2+, previously developed by our research group. The 5 s firing test, conducted under a swirl injection scheme, yielded average values of 50.38 N, 147 s, and 1210 m/s for thrust, I-sp, and c*, respectively, with the target value of 5 bar for the chamber pressure being reached after 2 s of operation. Alongside with a c* efficiency of 84%, these results suggest that the assessed green hypergolic bipropellant pair may be a promising alternative for applications in the low-thrust range.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 20 条
  • [1] Flight demonstration of new thruster and green propellant technology on the PRISMA satellite
    Anflo, K.
    Mollerberg, R.
    [J]. ACTA ASTRONAUTICA, 2009, 65 (9-10) : 1238 - 1249
  • [2] Asakura T., 2018, Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn, V16, P177
  • [3] Barrere M., 1960, ROCKET PROPULSION
  • [4] Brinck T, 2014, GREEN ENERGETIC MATERIALS, P1, DOI 10.1002/9781118676448
  • [5] Chiaverini O.M., 2007, FUNDAMENTALS HYBRID
  • [6] Filley CM, 2004, J NEUROPATH EXP NEUR, V63, P1
  • [7] A review of the toxicological and environmental hazards and risks of tetrahydrofuran
    Fowles, Jefferson
    Boatman, Rodney
    Bootman, Jim
    Lewis, Chris
    Morgott, David
    Rushton, Erik
    van Rooij, Joost
    Banton, Marcy
    [J]. CRITICAL REVIEWS IN TOXICOLOGY, 2013, 43 (10) : 811 - 828
  • [8] Hypergolic propellants based on hydrogen peroxide and organic compounds: historical aspect and current state
    Guseinov, Sh. L.
    Fedorov, S. G.
    Kosykh, V. A.
    Storozhenko, P. A.
    [J]. RUSSIAN CHEMICAL BULLETIN, 2018, 67 (11) : 1943 - 1954
  • [9] Hollingshead J., 2019, AIAA PROPULSION ENER, P1
  • [10] Experiment and Speculations on Nontoxic Hypergolic Propulsion with Hydrogen Peroxide
    Kang, Hongjae
    Kwon, Sejin
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2018, 55 (05) : 1230 - 1234