Multiplicity of positive solutions for a nonlinear Schrodinger-Poisson system

被引:78
|
作者
Sun, Juntao [1 ]
Wu, Tsung-fang [2 ]
Feng, Zhaosheng [3 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255049, Peoples R China
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
[3] Univ Texas Rio Grande Valley, Dept Math, Edinburg, TX 78539 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Positive solutions; Sobolev embedding theorem; Schrodinger Poisson system; Radial solution; Barycenter map; Concentration-compactness principle; CONCENTRATION-COMPACTNESS PRINCIPLE; GROUND-STATE SOLUTIONS; NODAL SOLUTIONS; EXISTENCE; EQUATION; CALCULUS;
D O I
10.1016/j.jde.2015.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the multiplicity of positive solutions for a nonlinear Schrodinger Poisson system: {-Delta U + lambda U + K (x) phi u = Q(x) broken vertical bar u broken vertical bar(p-2) u in R-3,R- -Delta phi = K(x) u(2) in R-3, where lambda > 0, 2 < p < 6, and both K(x) and Q(x) are nonnegative and uniformly continuous functions on R-3. We show that the number of positive solutions is dependent on the profile of Q (x). Some novel results are presented which improve and generalize the existing ones in the literature. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:586 / 627
页数:42
相关论文
共 50 条