Dynamical evolution of quantum oscillators toward equilibrium

被引:7
|
作者
Devi, A. R. Usha [1 ,2 ,3 ]
Rajagopal, A. K. [3 ]
机构
[1] Bangalore Univ, Dept Phys, Bangalore 560056, Karnataka, India
[2] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Inspire Inst Inc, Mclean, VA 22101 USA
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 01期
关键词
H-THEOREM;
D O I
10.1103/PhysRevE.80.011136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A pure quantum state of large number N of oscillators, interacting via harmonic coupling, evolves such that any small subsystem n << N of the global state approaches equilibrium. This provides a different example where stationarity emerges as natural phenomena under quantum dynamics alone, with no necessity to bring in any additional statistical postulates. Mixedness of equilibrated subsystems consisting of 1,2, ..., n << N clearly indicates that small subsystems are entangled with the rest of the state, i.e., the bath. Every single mode oscillator is found to relax in a mixed density matrix of the Boltzmann canonical form. In two oscillator stationary subsystems, intraentanglement within the "system" oscillators is found to exist when the magnitude of the squeezing parameter of the bath is comparable in magnitude with that of the coupling strength.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Evolution of quantum non-equilibrium for coupled harmonic oscillators
    Lustosa, Francisco Bento
    Pinto-Neto, Nelson
    Valentini, Antony
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2269):
  • [2] Toward quantum computing with oscillators
    Pysher, Matthew
    Miwa, Yoshichika
    Shahrokhshahi, Reihaneh
    Bloomer, Russell
    Pfister, Olivier
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [3] Dynamical Recurrence and the Quantum Control of Coupled Oscillators
    Genoni, Marco G.
    Serafini, Alessio
    Kim, M. S.
    Burgarth, Daniel
    PHYSICAL REVIEW LETTERS, 2012, 108 (15)
  • [4] Quantum dynamical maps and return to equilibrium
    Majewski, WA
    ACTA PHYSICA POLONICA B, 2001, 32 (05): : 1467 - 1474
  • [5] QUANTUM DYNAMICAL SEMIGROUPS AND APPROACH TO EQUILIBRIUM
    FRIGERIO, A
    LETTERS IN MATHEMATICAL PHYSICS, 1977, 2 (02) : 79 - 87
  • [6] Quantum limits to dynamical evolution
    Giovannetti, V
    Lloyd, S
    Maccone, L
    PHYSICAL REVIEW A, 2003, 67 (05):
  • [7] Quantum limits to dynamical evolution
    Giovannetti, V., 1600, American Physical Society (67):
  • [8] IRREVERSIBLE EVOLUTION TOWARDS EQUILIBRIUM OF COUPLED QUANTUM HARMONIC-OSCILLATORS - A COARSE-GRAINED APPROACH
    BLAISE, P
    DURAND, P
    HENRIROUSSEAU, O
    PHYSICA A, 1994, 209 (1-2): : 51 - 82
  • [9] The approach to equilibrium of a class of quantum dynamical semigroups
    Fagnola, F
    Rebolledo, R
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) : 561 - 572
  • [10] A quantum model for water: Equilibrium and dynamical properties
    Lobaugh, J
    Voth, GA
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (06): : 2400 - 2410