ACID MEDIA-INDUCED LEACHING IN FLY ASH ALKALI-ACTIVATED PASTES: EFFECT OF FLY ASH NATURE

被引:0
|
作者
Varga, C. [1 ]
Alonso, M. M. [1 ]
Puertas, F. [1 ]
机构
[1] Eduardo Torroja Inst Construct Sci, Cements & Recycling Mat Dept, Madrid, Spain
来源
CEMENT WAPNO BETON | 2017年 / 22卷 / 02期
关键词
alkali-activated fly ash (AAFA) cements; N-A-S-H gel; FTIR; acid attack; MECHANICAL-PROPERTIES; DECALCIFICATION; SLAG; RESISTANCE; RATIO;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Chemical attack on Portland cement paste in acid media has been widely studied and shown to induce changes in their microstructure that is causing decrease of mechanical strength. The impact of this aggressive solution on alkali-activated fly ash (AAFA) is insufficiently understood, however. This study explored leaching in early age (3-21 day)AAFA pastes in a 6M NH4NO3 solution to determine the impact on mechanical behaviour and on the composition and microstructure of the starting material on the process. Two AAFA pastes of different nature and compositions were prepared, along with control OPC pastes. The studies have shown that the aggressive 6M NH4NO3 solution had a much more moderate effect on AAFA than on OPC paste strength. Furthermore, the nature and chemical composition of the starting fly-ash was governing their reactivity and hence their mechanical behaviour and durability. Whilst low amounts of cations leached out of the former material, the leachate contained no aluminium, a component found in its main reaction product, N-A-S-H gel. NMR and FTIR studies showed that the post-exposure gels had higher silicon content than the pre-exposure materials. Simultaneously these methods had revealed the formation of aluminium hydroxide.
引用
收藏
页码:97 / +
页数:17
相关论文
共 50 条
  • [1] Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes
    Yang, Tao
    Zhu, Huajun
    Zhang, Zuhua
    Gao, Xuan
    Zhang, Changsen
    Wu, Qisheng
    CEMENT AND CONCRETE RESEARCH, 2018, 109 : 198 - 207
  • [2] Microanalysis of alkali-activated fly ash-CH pastes
    Williams, PJ
    Biernacki, JJ
    Walker, LR
    Meyer, HM
    Rawn, CJ
    Bai, JM
    CEMENT AND CONCRETE RESEARCH, 2002, 32 (06) : 963 - 972
  • [3] Natural Carbonation of Alkali-Activated Fly Ash and Slag Pastes
    Nedeljkovic, Marija
    Zuo, Yibing
    Arbi, Kamel
    Ye, Guang
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : 2213 - 2223
  • [4] Nanoindentation of Alkali-Activated Fly Ash
    Nemecek, Jiri
    Smilauer, Vit
    Kopecky, Lubomir
    Nemeckova, Jitka
    TRANSPORTATION RESEARCH RECORD, 2010, (2141) : 36 - 40
  • [5] Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes
    Puertas, F
    Fernández-Jiménez, A
    CEMENT & CONCRETE COMPOSITES, 2003, 25 (03): : 287 - 292
  • [6] Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes
    Li, Zhenming
    Lu, Tianshi
    Liang, Xuhui
    Dong, Hua
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2020, 135
  • [7] Pore solution composition of alkali-activated slag/fly ash pastes
    Zuo, Yibing
    Nedeljkovic, Marija
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2019, 115 : 230 - 250
  • [8] Effect of activator on rheological properties of alkali-activated slag-fly ash pastes
    Yuan Qiang
    Huang Yan
    Huang Ting-jie
    Yao Hao
    Wu Qi-hong
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (01) : 282 - 295
  • [9] Leaching resistance of alkali-activated slag and fly ash mortars exposed to organic acid
    Li, Zihui
    Peethamparan, Sulapha
    GREEN MATERIALS, 2018, 6 (03) : 117 - 130
  • [10] Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars
    Zhu, Huajun
    Zhang, Zuhua
    Zhu, Yingcan
    Tian, Liang
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 65 : 51 - 59