Dynamics of the Nonlinear Timoshenko System with Variable Delay

被引:16
|
作者
Yang, Xin-Guang [1 ]
Zhang, Jing [2 ]
Lu, Yongjin [2 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Virginia State Univ, Dept Math & Econ, Petersburg, VA 23806 USA
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 83卷 / 01期
基金
美国国家科学基金会;
关键词
Timoshenko system; Variable delay; Quasi-stability; Unstable manifold; Exponential attractor; ENERGY DECAY-RATES; EXPONENTIAL STABILITY; GLOBAL EXISTENCE; BEAM SYSTEM; 2ND SOUND; BOUNDARY; THERMOELASTICITY; STABILIZATION; CATTANEO; BEHAVIOR;
D O I
10.1007/s00245-018-9539-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the wellposedness of global solution and existence of global attractor to the nonlinear Timoshenko system subject to continuous variable time delay in the angular rotation of the beam filament. The waves are assumed to propagate under the same speed in the transversal and angular direction. A single mechanical damping is implemented to counter the destabilizing effect from the time delay term. By imposing appropriate assumptions on the damping term and sub-linear time delay term, we prove the existence of absorbing set and establish the quasi-stability of the gradient system generated from the solution to the system of equation. The quasi-stability property in turn implies the existence of finite dimensional global and exponential attractors that contain the unstable manifold formed from the set of equilibria.
引用
收藏
页码:297 / 326
页数:30
相关论文
共 50 条
  • [1] Dynamics of the Nonlinear Timoshenko System with Variable Delay
    Xin-Guang Yang
    Jing Zhang
    Yongjin Lu
    Applied Mathematics & Optimization, 2021, 83 : 297 - 326
  • [2] Long-time dynamics for a nonlinear Timoshenko system with delay
    Feng, Baowei
    Yang, Xin-Guang
    APPLICABLE ANALYSIS, 2017, 96 (04) : 606 - 625
  • [3] Existence of Attractors for a Nonlinear Timoshenko System with Delay
    Ramos, Anderson J. A.
    Dos Santos, Manoel J.
    Freitas, Mirelson M.
    Almeida Junior, Dilberto S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (04) : 1997 - 2020
  • [4] Existence of Attractors for a Nonlinear Timoshenko System with Delay
    Anderson J. A. Ramos
    Manoel J. Dos Santos
    Mirelson M. Freitas
    Dilberto S. Almeida Júnior
    Journal of Dynamics and Differential Equations, 2020, 32 : 1997 - 2020
  • [5] EXPONENTIAL STABILITY FOR A NONLINEAR TIMOSHENKO SYSTEM WITH DISTRIBUTED DELAY
    Bouzettouta, Lamine
    Hebhoub, Fahima
    Ghennam, Karima
    Benferdi, Sabrina
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (01): : 77 - 90
  • [6] Stability of thermoelastic Timoshenko system with variable delay in the internal feedback
    Ge, Xinfeng
    Su, Keqin
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (05): : 3457 - 3476
  • [7] Global existence and exponential stability for a nonlinear Timoshenko system with delay
    Baowei Feng
    Maurício L Pelicer
    Boundary Value Problems, 2015
  • [8] Global existence and exponential stability for a nonlinear Timoshenko system with delay
    Feng, Baowei
    Pelicer, Mauricio L.
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 13
  • [9] Long-time dynamics of a nonlinear Timoshenko beam with discrete delay term and nonlinear damping
    Dos Santos, M. J.
    Freitas, M. M.
    Ramos, A. J. A.
    Almeida Junior, D. S.
    Rodrigues, L. R. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (06)
  • [10] Global existence and stability results for a nonlinear Timoshenko system of thermoelasticity of type III with delay
    Hao, Jianghao
    Wei, Jing
    BOUNDARY VALUE PROBLEMS, 2018,