Network Traffic Classification Based on Deep Learning

被引:14
|
作者
Li, Junwei [1 ,2 ]
Pan, Zhisong [1 ]
机构
[1] Army Engn Univ, Inst Command Control Engn, Nanjing 210007, Peoples R China
[2] XinXiang Univ, Inst Comp & Informat Engn, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic classification; deep learning; convolution neural network; stack auto encoder; long short-term memory network; NEURAL-NETWORKS; INTERNET;
D O I
10.3837/tiis.2020.11.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.
引用
收藏
页码:4246 / 4267
页数:22
相关论文
共 50 条
  • [1] An Online Network Traffic Classification Method Based on Deep Learning
    Liao, Qing
    Li, Tianqi
    Zhang, Wei
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 34 - 39
  • [2] Network Traffic Classification Using Deep Learning
    Chen, Lei
    Liu, Jian
    Xian, Ming
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (7-8)
  • [3] Packet-based Network Traffic Classification Using Deep Learning
    Lim, Hyun-Kyo
    Kim, Ju-Bong
    Heo, Joo-Seong
    Kim, Kwihoon
    Hong, Yong-Geun
    Han, Youn-Hee
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 46 - 51
  • [4] Ensemble-Based Deep Learning Model for Network Traffic Classification
    Aouedi, Ons
    Piamrat, Kandaraj
    Parrein, Benoit
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4124 - 4135
  • [5] Adversarial Network Traffic: Towards Evaluating the Robustness of Deep-Learning-Based Network Traffic Classification
    Sadeghzadeh, Amir Mahdi
    Shiravi, Saeed
    Jalili, Rasool
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 1962 - 1976
  • [6] Adversarial Attacks on Deep Learning-Based Methods for Network Traffic Classification
    Li, Meimei
    Xu, Yiyan
    Li, Nan
    Jin, Zhongfeng
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 1123 - 1128
  • [7] Automatic Classification of Network Traffic Data based on Deep Learning in ONOS Platform
    Kwon, Jungmin
    Lee, Jungjin
    Yu, Miseon
    Park, Hyunggon
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1028 - 1030
  • [8] Network Traffic Classification Based On A Deep Learning Approach Using NetFlow Data
    Zhang Long
    Wang Jinsong
    COMPUTER JOURNAL, 2023, 66 (08): : 1882 - 1892
  • [9] Research on Multiple Classification Detection for Network Traffic Anomaly Based on Deep Learning
    Tong, HaiZhou
    2022 6TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, ISCSIC, 2022, : 12 - 16
  • [10] Detection and Classification of Network Traffic in Bot Network Using Deep Learning
    Srinarayani, K.
    Padmavathi, B.
    Datchanamoorthy, Kavitha
    Saraswathi, T.
    Maheswari, S.
    Vincy, R. Fatima
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2024, 23 (06)