Food is intricate, and food quality and safety are indispensable elements. With the rising public demands for safe and nutritious food products, a range of innovative, interdisciplinary, and multidimensional concepts have emerged in the last few decades. Nanozymes, apart from their therapeutic efficacies, are gaining increasing interest in safety and quality monitoring in the agri-food sector. These enzyme-mimetic nanomaterials are proven to detect and monitor food safety in real-time with high selectivity, stability, reliability, and recyclability. Nanozymes sourced from various nanomaterials like carbon, metal, and their oxides, metal-organic frameworks, and others offer several advantages over natural enzymes in food-based applications. Apart from real-time monitoring, these are also known for their robustness to harsh food processing environments, ease of production, and smooth and facile surface modifications. Nanozymes undergo single and multiple enzyme pathways during food analysis applications, facilitating the on-demand tailorable activity. In this context, this review briefly summarizes the working strategies and factors affecting the catalytic activity of nanozymes; the emphasis is placed on the detection of targeted analytes in the food matrix using nanozymes. Interdisciplinary tools, combined with nanozymes that aid in developing rapid on-spot identification, including spectroscopies, smartphones, electrochemiluminescence, and ELISA, are elucidated systematically. Evidenced by the rising number of nanozyme-based publications, many of the practical gaps in food analysis are narrowed. Simultaneously, some challenges like variations in recognition-to-signal patterns, optimization of nanozymes, and reproducibility of methodology need to be addressed in the future.