Introducing transformation twins in titanium alloys: an evolution of α-variants during additive manufacturing

被引:38
|
作者
Wang, H. [1 ,2 ]
Chao, Q. [3 ]
Yang, L. [1 ,2 ]
Cabral, M. [1 ,2 ]
Song, Z. Z. [1 ,2 ]
Wang, B. Y. [1 ,2 ]
Primig, S. [4 ]
Xu, W. [3 ]
Chen, Z. B. [1 ,2 ]
Ringer, S. P. [1 ,2 ]
Liao, X. Z. [1 ,2 ]
机构
[1] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[3] Deakin Univ, Fac Sci & Technol, Sch Engn, Waurn Ponds, Australia
[4] UNSW, Sch Mat Sci & Engn, Sydney, NSW, Australia
来源
MATERIALS RESEARCH LETTERS | 2021年 / 9卷 / 03期
基金
澳大利亚研究理事会;
关键词
Titanium alloy; additive manufacturing; twinning mechanism; variant selections;
D O I
10.1080/21663831.2020.1850536
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Titanium alloys can experience a cooling-induced phase transformation from a body-centred cubic phase into a hexagonal close-packed phase which occurs in 12 crystallographically equivalent variants. Among them, variant selection II, 60 degrees/< 1 (2) over bar 10 >, is very close to the orientation of {10 (1) over bar1} < 1 (2) over bar 10 > twins (57.42 degrees/< 1 (2) over bar 10 >). We propose that the cyclic thermal loading during additive manufacturing introduces large thermal stresses at high temperature, enabling grain reorientation that transforms the 60 degrees/< 1 (2) over bar 10 > variant boundaries into the more energetically stable 57.42 degrees/< 1 (2) over bar 10 > twin boundaries. This transformation twinning phenomenon follows a strain accommodation mechanism and the resulting boundary structure benefits the mechanical properties and thermal stability of titanium alloys. [GRAPHICS] . IMPACT STATEMENT A new twinning mechanism, transformation twinning, was discovered in a Ti- 6Al-4V alloy fabricated by selective laser melting. The resulting high density of transformation twins impact the global mechanical properties significantly.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [1] Additive Manufacturing of Titanium Alloys
    M. Qian
    D. L. Bourell
    JOM, 2017, 69 : 2677 - 2678
  • [2] Additive Manufacturing of Titanium Alloys
    Dutta, B.
    Froes, F. H.
    ADVANCED MATERIALS & PROCESSES, 2014, 172 (02): : 18 - 23
  • [3] Additive Manufacturing of Titanium Alloys
    Qian, M.
    Bourell, D. L.
    JOM, 2017, 69 (12) : 2677 - 2678
  • [4] Biomedical titanium alloys and their additive manufacturing
    Yu-Lin Hao
    Shu-Jun Li
    Rui Yang
    Rare Metals, 2016, 35 (09) : 661 - 671
  • [5] The Additive Manufacturing (AM) of titanium alloys
    Dutta B.
    Froes F.H.S.
    1600, Elsevier Ltd (72): : 96 - 106
  • [6] Biomedical titanium alloys and their additive manufacturing
    Yu-Lin Hao
    Shu-Jun Li
    Rui Yang
    Rare Metals, 2016, 35 : 661 - 671
  • [7] Biomedical titanium alloys and their additive manufacturing
    Hao, Yu-Lin
    Li, Shu-Jun
    Yang, Rui
    RARE METALS, 2016, 35 (09) : 661 - 671
  • [8] Robocasting Additive Manufacturing of Titanium and Titanium Alloys: A Review
    Oliver-Urrutia, Carolina
    Kashimbetova, Adelia
    Slamecka, Karel
    Celko, Ladislav
    Montufar, Edgar B.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (02) : 389 - 402
  • [9] Robocasting Additive Manufacturing of Titanium and Titanium Alloys: A Review
    Carolina Oliver-Urrutia
    Adelia Kashimbetova
    Karel Slámečka
    Ladislav Čelko
    Edgar B. Montufar
    Transactions of the Indian Institute of Metals, 2023, 76 : 389 - 402
  • [10] Eliminating segregation defects during additive manufacturing of high strength β-titanium alloys
    Ng, C. H.
    Bermingham, M. J.
    Dargusch, M. S.
    ADDITIVE MANUFACTURING, 2021, 39