Normalization for Cubical Type Theory

被引:10
|
作者
Sterling, Jonathan [1 ]
Angiuli, Carlo [1 ]
机构
[1] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
关键词
1ST STEPS;
D O I
10.1109/LICS52264.2021.9470719
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major open problem in the syntactic metatheory of cubical type theory. Our normalization result is reduction-free, in the sense of yielding a bijection between equivalence classes of terms in context and a tractable language of beta/eta-normal forms. As corollaries we obtain both decidability of judgmental equality and the injectivity of type constructors.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Guarded Cubical Type Theory
    Birkedal, Lars
    Bizjak, Ales
    Clouston, Ranald
    Grathwohl, Hans Bugge
    Spitters, Bas
    Vezzosi, Andrea
    JOURNAL OF AUTOMATED REASONING, 2019, 63 (02) : 211 - 253
  • [2] Guarded Cubical Type Theory
    Lars Birkedal
    Aleš Bizjak
    Ranald Clouston
    Hans Bugge Grathwohl
    Bas Spitters
    Andrea Vezzosi
    Journal of Automated Reasoning, 2019, 63 : 211 - 253
  • [3] Canonicity for Cubical Type Theory
    Huber, Simon
    JOURNAL OF AUTOMATED REASONING, 2019, 63 (02) : 173 - 210
  • [5] Canonicity for Cubical Type Theory
    Simon Huber
    Journal of Automated Reasoning, 2019, 63 : 173 - 210
  • [6] Cubical Computational Type Theory and RedPRL
    Hou, Kuen-Bang
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2018, (274):
  • [7] INTERNAL PARAMETRICITY FOR CUBICAL TYPE THEORY
    Cavallo, Evan
    Harper, Robert
    LOGICAL METHODS IN COMPUTER SCIENCE, 2021, 17 (04) : 5:1 - 5:60
  • [8] UNIFYING CUBICAL AND MULTIMODAL TYPE THEORY
    Aagaard, Frederik lerbjerg
    Kristensen, Magnus baunsgaard
    Gratzer, Daniel
    Birkedal, Lars
    LOGICAL METHODS IN COMPUTER SCIENCE, 2024, 20 (04) : 1 - 25
  • [9] A cubical model of homotopy type theory
    Awodey, Steve
    ANNALS OF PURE AND APPLIED LOGIC, 2018, 169 (12) : 1270 - 1294
  • [10] CANONICITY AND HOMOTOPY CANONICITY FOR CUBICAL TYPE THEORY
    Coquand, Thierry
    Huber, Simon
    Sattler, Christian
    LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (01)