Approximating Bayesian posteriors using multivariate Gaussian quadrature.

被引:0
|
作者
Cranfield, JAL [1 ]
Preckel, PV [1 ]
Liu, SQ [1 ]
机构
[1] PURDUE UNIV,W LAFAYETTE,IN 47907
来源
关键词
D O I
暂无
中图分类号
F3 [农业经济];
学科分类号
0202 ; 020205 ; 1203 ;
摘要
引用
收藏
页码:396 / 396
页数:1
相关论文
共 50 条
  • [1] Efficient sampling via gaussian quadrature.
    Arndt, C
    Preckel, PV
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1996, 78 (05) : 1395 - 1395
  • [2] Bayesian quadrature with non-normal approximating functions
    Kennedy, M
    STATISTICS AND COMPUTING, 1998, 8 (04) : 365 - 375
  • [3] Bayesian quadrature with non-normal approximating functions
    MARC KENNEDY
    Statistics and Computing, 1998, 8 : 365 - 375
  • [4] Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks
    Ramos-Lopez, Dario
    Masegosa, Andres R.
    Salmeron, Antonio
    Rumi, Rafael
    Langseth, Helge
    Nielsen, Thomas D.
    Madsen, Anders L.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 100 : 115 - 134
  • [5] Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks
    Ramos-López, Darío (dramoslopez@ual.es), 1600, Elsevier Inc. (100):
  • [6] Approximating posteriors with high-dimensional nuisance parameters via integrated rotated Gaussian approximation
    Van den Boom, W.
    Reeves, G.
    Dunson, D. B.
    BIOMETRIKA, 2021, 108 (02) : 269 - 282
  • [7] Bayesian Estimation of the Entropy of the Multivariate Gaussian
    Srivastava, Santosh
    Gupta, Maya R.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1103 - +
  • [8] UNCERTAINTY QUANTIFICATION OF MULTIVARIATE GAUSSIAN PROCESS REGRESSION FOR APPROXIMATING MULTIVARIATE COMPUTER CODES
    Al-Taweel, Younus
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1058 - 1067
  • [9] A Multivariate Non-Gaussian Bayesian Filter Using Power Moments
    Wu, Guangyu
    Lindquist, Anders
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6010 - 6025
  • [10] Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
    Ober, Sebastian W.
    Aitchison, Laurence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139