Biased random walks and propagation failure

被引:8
|
作者
Mendez, Vicenc
Fedotov, Sergei
Campos, Daniel
Horsthemke, Werner
机构
[1] Autonomous Univ Barcelona, Grp Fis Estadist, Dept Fis, Fac Ciencies, E-08193 Barcelona, Spain
[2] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
[3] So Methodist Univ, Dept Chem, Dallas, TX 75275 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.75.011118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The critical value of the reaction rate able to sustain the propagation of an invasive front is obtained for general non-Markovian biased random walks with reactions. From the Hamilton-Jacobi equation corresponding to the mean field equation we find that the critical reaction rate depends only on the mean waiting time and on the statistical properties of the jump length probability distribution function and is always underestimated by the diffusion approximation. If the reaction rate is larger than the jump frequency, invasion always succeeds, even in the case of maximal bias. Numerical simulations support our analytical predictions.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Biased random walks
    Azar, Y
    Broder, AZ
    Karlin, AR
    Linial, N
    Phillips, S
    COMBINATORICA, 1996, 16 (01) : 1 - 18
  • [2] Biased random walks on random combs
    Elliott, Tanya M.
    Wheater, John F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : 8265 - 8288
  • [3] Biased random walks on random graphs
    Ben Arous, Gerard
    Fribergh, Alexander
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 99 - 153
  • [4] Fragment formation in biased random walks
    Ramola, Kabir
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [5] SCALING IN BIASED RANDOM-WALKS
    HALLEY, JW
    NAKANISHI, H
    SUNDARARAJAN, R
    PHYSICAL REVIEW B, 1985, 31 (01): : 293 - 298
  • [6] Time Dependent Biased Random Walks
    Haslegrave, John
    Sauerwald, Thomas
    Sylvester, John
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (02)
  • [7] Biased random walks on the interlacement set
    Fribergh, Alexander
    Popov, Serguei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1341 - 1358
  • [8] Biased random walks on directed trees
    Takacs, C
    PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (01) : 123 - 139
  • [9] Biased random walks on directed trees
    Christiane Takacs
    Probability Theory and Related Fields, 1998, 111 : 123 - 139
  • [10] Localization transition of biased random walks on random networks
    Sood, Vishal
    Grassberger, Peter
    PHYSICAL REVIEW LETTERS, 2007, 99 (09)