Better Performance of Memristive Convolutional Neural Network Due to Stochastic Memristors

被引:2
|
作者
Wu, Kechuan [1 ,2 ]
Wang, Xiaoping [1 ,2 ]
Li, Mian [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan, Peoples R China
[2] Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Stochastic memristor; Convolutional neural network; Dataset noise;
D O I
10.1007/978-3-030-22796-8_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Network (CNN) has gotten admirable performance in the domain of image recognition. Nevertheless, the training of CNN on CPU or GPU is energy-intensive and time-consuming. Memristor crossbar is an alternative of the specific chip for CNN application. But it is hard to tune the memristor to certain conductance precisely. This work simulates the performance change of memristor-based CNN when memristor is with stochasticity. The simulation results demonstrate that stochastic memristor-based CNN performs better on CIFAR-10 dataset when memristive stochasticity is low. This is an encouragement for the engineer of memristor crossbar chip and edge computing application.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [1] Binarized Neural Network with Stochastic Memristors
    Krestinskaya, Olga
    Otaniyozov, Otaniyoz
    James, Alex Pappachen
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 274 - 275
  • [2] Convolutional neural network for high-performance reservoir computing using dynamic memristors
    Byun, Yongjin
    So, Hyojin
    Kim, Sungjun
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [3] Memory analysis for memristors and memristive recurrent neural networks
    Bao, Gang
    Zhang, Yide
    Zeng, Zhigang
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (01) : 96 - 105
  • [4] Memory Analysis for Memristors and Memristive Recurrent Neural Networks
    Gang Bao
    Yide Zhang
    Zhigang Zeng
    IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (01) : 96 - 105
  • [5] High-performance convolutional neural network emulation via FPGA-integrated memristive circuitry
    Yang, Yucheng
    Tan, Aolong
    Duan, Shukai
    Wang, Lidan
    MICROELECTRONICS JOURNAL, 2024, 150
  • [6] Stochastic Area Pooling for Generic Convolutional Neural Network
    Deng, Zhidong
    Wang, Zhenyang
    Wang, Shiyao
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1760 - 1761
  • [7] Indoor visible light positioning system based on memristive convolutional neural network
    Chen, Qi
    Wang, Fengying
    Deng, Bo
    Qin, Ling
    Hu, Xiaoli
    OPTICS COMMUNICATIONS, 2025, 577
  • [8] Stochastic computing in convolutional neural network implementation: a review
    Lee, Yang Yang
    Halim, Zaini Abdul
    PEERJ COMPUTER SCIENCE, 2020, 6
  • [9] Energy-Efficient Brain Floating Point Convolutional Neural Network Using Memristors
    Tong, Shao-Qin
    Bao, Han
    Li, Jian-Cong
    Yang, Ling
    Zhou, Hou-Ji
    Li, Yi
    Miao, Xiang-Shui
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (05) : 3293 - 3300
  • [10] ConvDip: A Convolutional Neural Network for Better EEG Source Imaging
    Hecker, Lukas
    Rupprecht, Rebekka
    Tebartz Van Elst, Ludger
    Kornmeier, Juergen
    FRONTIERS IN NEUROSCIENCE, 2021, 15