Identification of diabetes susceptibility loci in db mice by combined quantitative trait loci analysis and haplotype mapping

被引:7
|
作者
Monitani, Maki
Togawa, Katsuhiko
Yaguchi, Hiroshi
Fujita, Yuka
Yamaguchi, Yuka
Inoue, Hiroshi
Kamatani, Naoyuki
Itakura, Mitsuo [1 ]
机构
[1] Univ Tokushima, Inst Genome Res, Div Genet Informat, Tokushima 7708503, Japan
[2] Otsuka Pharmaceut Co Ltd, Inst New Drug Discovery 1, Tokushima 7710192, Japan
[3] Otsuka Pharmaceut Factory Inc, Div Pharmacol Drug Safety & Metab, Naruto 7728601, Japan
[4] Tokyo Womens Med Univ, Dept Adv Biomed Engn & Sci, Div Stat Genet, Tokyo, Japan
关键词
type 2 diabetes (T2D); Lepr(db) (db) mice; F-2; intercross; R/qtl; conditional QTL; SNP (single-nucleotide polymorphism); haplotype block; haplotype mapping;
D O I
10.1016/j.ygeno.2006.07.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To identify the disease-susceptibility genes of type 2 diabetes, we performed quantitative trait loci (QTL) analysis in F-2 populations generated from a BKS.Cg-m+/+Lepr(db) and C3H/HeJ intercross, taking advantage of genetically determined obesity and diabetes traits associated with the db gene. A genome-wide scan in the F, populations divided by sex and db genotypes identified 14 QTLs in total and 3 major QTLs on chromosome (Chr) 3 (LOD 5.78) for fat pad weight, Chr 15 (LOD 6.64) for body weight, and Chr 16 (LOD 8.15) for blood glucose concentrations. A linear-model-based genome scan using interactive covariates allowed us to consider sex- or sex-by db-specific effects of each locus, For the most significant QTL on Chr 16, the high-resolution haplotype comparison between BKS and C3H strains reduced the critical QTL interval from 20 to 4.6 Mb by excluding shared haplotype regions and identified 11 nonsynonymous single-nucleotide polymorphisms in six candidate genes. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:719 / 730
页数:12
相关论文
共 50 条
  • [1] Haplotype based expression Quantitative Trait Loci mapping
    Hofmeister, Robin J.
    Delaneau, Olivier
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 792 - 792
  • [2] Identification of NASH gene loci in mice using in silico quantitative trait loci (QTL) mapping analysis
    Green, RM
    Igolnikov, A
    Spatz, K
    Lammert, F
    GASTROENTEROLOGY, 2004, 126 (04) : A670 - A670
  • [3] Haplotype linkage disequilibrium mapping of quantitative trait loci.
    Fan, R
    Xiong, M
    AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) : 572 - 572
  • [4] Quantitative trait loci mapping
    Grisel, JE
    Crabbe, JC
    ALCOHOL HEALTH & RESEARCH WORLD, 1995, 19 (03): : 220 - 227
  • [5] Mapping quantitative trait loci for nicotine preference in mice
    Wildenauer, DB
    Aschoff, S
    Hallmayer, J
    Schwab, SG
    Gabel, S
    Schroff, KC
    Richter, E
    AMERICAN JOURNAL OF MEDICAL GENETICS, 2001, 105 (07): : 568 - 568
  • [6] Linkage disequilibrium mapping of novel lung tumor susceptibility quantitative trait loci in mice
    Daolong Wang
    William J Lemon
    Ming You
    Oncogene, 2002, 21 : 6858 - 6865
  • [7] Linkage disequilibrium mapping of novel lung tumor susceptibility quantitative trait loci in mice
    Wang, DL
    Lemon, WJ
    You, M
    ONCOGENE, 2002, 21 (44) : 6858 - 6865
  • [8] Identification of quantitative trait loci for prolificacy and growth in mice
    B. W. Kirkpatrick
    A. Mengelt
    N. Schulman
    I. C. A. Martin
    Mammalian Genome, 1998, 9 : 97 - 102
  • [9] Identification of quantitative trait loci for prolificacy and growth in mice
    Kirkpatrick, BW
    Mengelt, A
    Schulman, N
    Martin, ICA
    MAMMALIAN GENOME, 1998, 9 (02) : 97 - 102
  • [10] Multivariate combined linkage and association mapping of quantitative trait loci
    Jung, Jeesun
    Fan, Ruzong
    Liu, Lian
    GENETIC EPIDEMIOLOGY, 2007, 31 (05) : 477 - 477