Wide-Bandgap Cu(In,Ga)S2 Photocathodes Integrated on Transparent Conductive F:SnO2 Substrates for Chalcopyrite-Based Water Splitting Tandem Devices

被引:23
|
作者
Gaillard, Nicolas [1 ,2 ]
Prasher, Dixit [1 ,4 ]
Chong, Marina [1 ]
Deangelis, Alexander [1 ]
Horsley, Kimberly [1 ]
Ishii, Hope A. [2 ,3 ]
Bradley, John P. [2 ,3 ]
Varley, Joel [5 ]
Ogitsu, Tadashi [5 ]
机构
[1] Univ Hawaii, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA
[2] Univ Hawaii, Mat Sci Consortium Res & Educ, Honolulu, HI 96822 USA
[3] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA
[4] Maharishi Markandeshwar Deemed Univ, Dept Phys, Mullana 133207, Ambala, India
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
ACS APPLIED ENERGY MATERIALS | 2019年 / 2卷 / 08期
关键词
photoelectrochemical hydrogen production; water splitting; copper chalcopyrites; Cu(In; Ga)S-2; CuGaSe2; transparent conductive oxide substrate; F:SnO2; FTO; SOLAR HYDROGEN-PRODUCTION; TOTAL-ENERGY CALCULATIONS; THIN-FILMS; HIGH-EFFICIENCY; CELLS; CUINS2; CUGASE2; SEMICONDUCTORS; EVOLUTION; LAYER;
D O I
10.1021/acsaem.9b00690
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Whole-chalcopyrite-based tandem devices for photoelectrochemical (PEC) water splitting have emerged as a promising route for obtaining similar to 20% solar-to-hydrogen efficiencies. Here we pursue this approach by demonstrating integration of the top cell wide-bandgap (E-G) chalcopyrite onto a transparent conductor, which is a critical step in the realization of tandem devices. We report specifically on our efforts to synthesize photoactive Cu(In,Ga)S-2 thin films on transparent conductive F:SnO2 (FTO), while preserving the optoelectronic properties of the FTO substrate and preventing the formation of a resistive SnSx interfacial layer. We demonstrate that such attributes can be achieved via close space sulfurization (CSS) of lower E-G Cu(In,Ga)Se-2 precursors, coevaporated on FTO at low temperature. Depending on Cu(In,Ga)Se-2 precursors' Ga and In content, the resulting Cu(In,Ga)S-2 solar absorbers have E-G energies spanning from 2.05 to 2.45 eV. The CSS process, which includes a low-temperature annealing in sulfur vapor followed by a high-temperature crystallization under inert atmosphere, allowed for up to 95% Se substitution with S in the chalcopyrite lattice, tuning both E-G and band edge positions that impact PEC performance. Photoelectrochemical measurements performed under AM1.5(G) illumination in 0.5 M H2SO4 on the 2.05 eV CuInGaS2 photocathode revealed a saturation photocurrent density (J(SAT)) of -5.25 mA/cm(2), a value corresponding to 38% of the absorber's optical limit. We further concluded that such low J(SAT) originates from subpar optical absorption of Cu(In,Ga)S-2 absorbers. Future improvements of the CSS process are expected to improve material quality toward our end goal of achieving whole-chalcopyrite tandem PEC devices.
引用
收藏
页码:5515 / 5524
页数:19
相关论文
共 8 条
  • [1] Wide-Bandgap Cu(In, Ga)S2 Solar Cell: Mitigation of Composition Segregation in High Ga Films for Better Efficiency
    Adeleye, Damilola
    Sood, Mohit
    Oli, Arivazhagan Valluvar
    Toerndahl, Tobias
    Hultqvist, Adam
    Vanderhaegen, Aline
    Lanzoni, Evandro Martin
    Hu, Yucheng
    Kusch, Gunnar
    Melchiorre, Michele
    Redinger, Alex
    Oliver, Rachel A.
    Siebentritt, Susanne
    SMALL, 2025, 21 (08)
  • [2] Improving Cu2ZnSnS4-Based Photocathodes for Solar Water Splitting via SnO2 Overlayers
    Guo, Peng
    Tang, Yonghua
    Cheng, Jinshui
    Mo, Rong
    Luo, Jingshan
    Li, Hongxing
    ACS ENERGY LETTERS, 2024, 9 (12): : 6055 - 6063
  • [3] Photoelectrochemical water reduction over wide gap (Ag,Cu)(In,Ga)S2 thin film photocathodes
    Septina, Wilman
    Sugimoto, Minori
    Chao, Ding
    Shen, Qing
    Nakatsuka, Shigeru
    Nose, Yoshitaro
    Harada, Takashi
    Ikeda, Shigeru
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (19) : 12502 - 12508
  • [4] Wide Band Gap CuGa(S,Se)2 Thin Films on Transparent Conductive Fluorinated Tin Oxide Substrates as Photocathode Candidates for Tandem Water Splitting Devices
    DeAngelis, Alexander D.
    Horsley, Kimberly
    Gaillard, Nicolas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (26): : 14304 - 14312
  • [5] Highly efficient Ag-alloyed Cu(In,Ga)Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells
    Kim, Kihwan
    Ahn, Seung Kyu
    Choi, Jang Hoon
    Yoo, Jinsoo
    Eo, Young-Joo
    Cho, Jun-Sik
    Cho, Ara
    Gwak, Jihye
    Song, Soomin
    Cho, Dae-Hyung
    Chung, Yong-Duck
    Yun, Jae Ho
    NANO ENERGY, 2018, 48 : 345 - 352
  • [6] Performance and limits of 2.0 eV bandgap CuInGaS2 solar absorber integrated with CdS buffer on F:SnO2 substrate for multijunction photovoltaic and photoelectrochemical water splitting devices
    Gaillard, Nicolas
    Septina, Wilman
    Varley, Joel
    Ogitsu, Tadashi
    Ohtaki, Kenta K.
    Ishii, Hope A.
    Bradley, John P.
    Muzzillo, Christopher
    Zhu, Kai
    Babbe, Finn
    Cooper, Jason
    MATERIALS ADVANCES, 2021, 2 (17): : 5752 - 5763
  • [7] Performance and limits of 2.0 eV bandgap CuInGaS2 solar absorber integrated with CdS buffer on F:SnO2 substrate for multijunction photovoltaic and photoelectrochemical water splitting devices (vol 2, pg 5752, 2021)
    Gaillard, Nicolas
    Septina, Wilman
    Varley, Joel
    Ogitsu, Tadashi
    Ohtaki, Kenta K.
    Ishii, Hope A.
    Bradley, John P.
    Muzzillo, Christopher
    Zhu, Kai
    Babbe, Finn
    Cooper, Jason
    MATERIALS ADVANCES, 2021, 2 (18): : 6112 - 6112
  • [8] A Bottom-Up Approach toward All-Solution-Processed High-Efficiency Cu(In,Ga)S2 Photocathodes for Solar Water Splitting
    Guijarro, Nestor
    Prevot, Mathieu S.
    Yu, Xiaoyun
    Jeanbourquin, Xavier A.
    Bornoz, Pauline
    Bouree, Wiktor
    Johnson, Melissa
    Le Formal, Florian
    Sivula, Kevin
    ADVANCED ENERGY MATERIALS, 2016, 6 (07)