Indecomposable Coverings

被引:14
|
作者
Pach, Janos [1 ,2 ]
Tardos, Gabor [3 ]
Toth, Geza [4 ]
机构
[1] CUNY City Coll, New York, NY 10012 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[4] Hungarian Acad Sci, Renyi Inst, H-1364 Budapest, Hungary
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
PLANE;
D O I
10.4153/CMB-2009-048-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every k > 1, there exist k-fold coverings of the plane (i) with strips, 00 with axis-parallel rectangles, and (iii) with homothets of any fixed concave quadrilateral, that cannot be decomposed in to two coverings. We also construct for every k > 1 a set of points P and a family of disks D in the plane, each containing at least k elements of P, such that, no matter how we color the points of P with two colors, there exists a disk D is an element of D all of whose points are of the same color.
引用
收藏
页码:451 / 463
页数:13
相关论文
共 50 条