Probabilistic Forecasting of Wind Turbine Icing Related Production Losses Using Quantile Regression Forests
被引:13
|
作者:
Molinder, Jennie
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Earth Sci, SE-75236 Uppsala, SwedenUppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden
Molinder, Jennie
[1
]
Scher, Sebastian
论文数: 0引用数: 0
h-index: 0
机构:
Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden
Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, SwedenUppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden
Scher, Sebastian
[2
,3
]
论文数: 引用数:
h-index:
机构:
Nilsson, Erik
[1
]
Kornich, Heiner
论文数: 0引用数: 0
h-index: 0
机构:
SMHI, Unit Meteorol Res, SE-60176 Norrkoping, SwedenUppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden
Kornich, Heiner
[4
]
Bergstrom, Hans
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Earth Sci, SE-75236 Uppsala, SwedenUppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden
Bergstrom, Hans
[1
]
Sjoblom, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Earth Sci, SE-75236 Uppsala, SwedenUppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden
Sjoblom, Anna
[1
]
机构:
[1] Uppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden
[2] Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden
[3] Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, Sweden
[4] SMHI, Unit Meteorol Res, SE-60176 Norrkoping, Sweden
A probabilistic machine learning method is applied to icing related production loss forecasts for wind energy in cold climates. The employed method, called quantile regression forests, is based on the random forest regression algorithm. Based on the performed tests on data from four Swedish wind parks available for two winter seasons, it has been shown to produce valuable probabilistic forecasts. Even with the limited amount of training and test data that were used in the study, the estimated forecast uncertainty adds more value to the forecast when compared to a deterministic forecast and a previously published probabilistic forecast method. It is also shown that the output from a physical icing model provides useful information to the machine learning method, as its usage results in an increased forecast skill when compared to only using Numerical Weather Prediction data. A potential additional benefit in machine learning for some stations was also found when using information in the training from other stations that are also affected by icing. This increases the amount of data, which is otherwise a challenge when developing forecasting methods for wind energy in cold climates.
机构:
Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, GermanyColorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
Ordiano, Jorge Angel Gonzalez
Groell, Lutz
论文数: 0引用数: 0
h-index: 0
机构:
Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, GermanyColorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
Groell, Lutz
Mikut, Ralf
论文数: 0引用数: 0
h-index: 0
机构:
Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, GermanyColorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
Mikut, Ralf
Hagenmeyer, Veit
论文数: 0引用数: 0
h-index: 0
机构:
Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, GermanyColorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA