WELL-POSEDNESS AND THE MULTISCALE ALGORITHM FOR HETEROGENEOUS SCATTERING OF MAXWELL'S EQUATIONS IN DISPERSIVE MEDIA
被引:0
|
作者:
Zhang, Yongwei
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Zhang, Yongwei
[1
]
Cao, Liqun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100147, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Cao, Liqun
[2
,3
]
Shi, Dongyang
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Shi, Dongyang
[1
]
机构:
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100147, Peoples R China
Maxwell's equations;
dispersive medium;
well-posedness;
the multiscale asymptotic expansion;
finite element method;
ELECTROMAGNETIC SCATTERING;
HOMOGENIZATION;
SINGULARITIES;
PARAMETERS;
FIELDS;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper discusses the well-posedness and the multiscale algorithm for the heterogeneous scattering of Maxwell's equations in dispersive media with a periodic microstructure or with many subdivided periodic microstructures. An exact transparent boundary condition is developed to reduce the scattering problem into an initial-boundary value problem in heterogeneous materials. The well-posedness and the stability analysis for the reduced problem are derived. The multiscale asymptotic expansions of the solution for the reduced problem are presented. The convergence results of the multiscale asymptotic method are proved for the dispersive media with a periodic microstructure. A multiscale Crank-Nicolson mixed finite element method (FEM) is proposed where the perfectly matched layer (PML) is utilized to truncate infinite domain problems. Numerical test studies are then carried out to validate the theoretical results.
机构:
Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
Bona, Jerry L.
Chen, HongQiu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USAUniv Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
机构:
Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Zhang, Yongwei
Cao, Liqun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
LSEC, Beijing, Peoples R China
NCMIS, Beijing, Peoples R ChinaChinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Cao, Liqun
Feng, Yangde
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Feng, Yangde
Wang, Wu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China