Cyanobacterial contribution to the genomes of the plastid-lacking protists

被引:28
|
作者
Maruyama, Shinichiro [1 ]
Matsuzaki, Motomichi [1 ]
Misawa, Kazuharu [1 ]
Nozaki, Hisayoshi [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Bunkyo Ku, Tokyo 1130033, Japan
来源
基金
日本学术振兴会;
关键词
PRIMARY PHOTOSYNTHETIC EUKARYOTES; GENE-TRANSFER; RED ALGAE; PUNCTATE DISTRIBUTION; EVOLUTION; ORIGIN; ENDOSYMBIOSIS; PHYLOGENY; DIVERGENCE; SEQUENCE;
D O I
10.1186/1471-2148-9-197
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited. Results: We identified 12 gene families with cyanobacterial ancestry in the genomes of a taxonomically wide range of plastid-lacking eukaryotes (Phytophthora [Chromalveolata], Naegleria [Excavata], Dictyostelium [Amoebozoa], Saccharomyces and Monosiga [Opisthokonta]) using a novel phylogenetic pipeline. The eukaryotic gene clades with cyanobacterial ancestry were mostly composed of genes from bikonts (Archaeplastida, Chromalveolata, Rhizaria and Excavata). We failed to find genes with cyanobacterial ancestry in Saccharomyces and Dictyostelium, except for a photorespiratory enzyme conserved among fungi. Meanwhile, we found several Monosiga genes with cyanobacterial ancestry, which were unrelated to other Opisthokonta genes. Conclusion: Our data demonstrate that a considerable number of genes with cyanobacterial ancestry have contributed to the genome composition of the plastid-lacking protists, especially bikonts. The origins of those genes might be due to lateral gene transfer events, or an ancient primary or secondary endosymbiosis before the diversification of bikonts. Our data also show that all genes identified in this study constitute multi-gene families with punctate distribution among eukaryotes, suggesting that the transferred genes could have survived through rounds of gene family expansion and differential reduction.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Cyanobacterial contribution to the genomes of the plastid-lacking protists
    Shinichiro Maruyama
    Motomichi Matsuzaki
    Kazuharu Misawa
    Hisayoshi Nozaki
    BMC Evolutionary Biology, 9
  • [2] CYANOBACTERIAL CONTRIBUTION TO THE GENOMES OF THE PLASTID-LACKING PROTISTS
    Maruyama, S.
    Matsuzaki, M.
    Misawa, K.
    Nozaki, H.
    PHYCOLOGIA, 2009, 48 (04) : 80 - 80
  • [3] Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes
    Shinichiro Maruyama
    Kazuharu Misawa
    Mineo Iseki
    Masakatsu Watanabe
    Hisayoshi Nozaki
    BMC Evolutionary Biology, 8
  • [4] Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes
    Maruyama, Shinichiro
    Misawa, Kazuharu
    Iseki, Mineo
    Watanabe, Masakatsu
    Nozaki, Hisayoshi
    BMC EVOLUTIONARY BIOLOGY, 2008, 8 (1)
  • [5] Cyanobacterial contribution to algal nuclear genomes a primarily limited to plastid functions
    Reyes-Prieto, Adrian
    Hackett, Jeremiah D.
    Soares, Marcelo B.
    Bonaldo, Maria F.
    Bhattacharya, Debashish
    CURRENT BIOLOGY, 2006, 16 (23) : 2320 - 2325
  • [6] Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae
    Max E. Schön
    Vasily V. Zlatogursky
    Rohan P. Singh
    Camille Poirier
    Susanne Wilken
    Varsha Mathur
    Jürgen F. H. Strassert
    Jarone Pinhassi
    Alexandra Z. Worden
    Patrick J. Keeling
    Thijs J. G. Ettema
    Jeremy G. Wideman
    Fabien Burki
    Nature Communications, 12
  • [7] Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae
    Schon, Max E.
    Zlatogursky, Vasily V.
    Singh, Rohan P.
    Poirier, Camille
    Wilken, Susanne
    Mathur, Varsha
    Strassert, Juergen F. H.
    Pinhassi, Jarone
    Worden, Alexandra Z.
    Keeling, Patrick J.
    Ettema, Thijs J. G.
    Wideman, Jeremy G.
    Burki, Fabien
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids
    Cenci, Ugo
    Sibbald, Shannon J.
    Curtis, Bruce A.
    Kamikawa, Ryoma
    Eme, Laura
    Moog, Daniel
    Henrissat, Bernard
    Marechal, Eric
    Chabi, Malika
    Djemiel, Christophe
    Roger, Andrew J.
    Kim, Eunsoo
    Archibald, John M.
    BMC BIOLOGY, 2018, 16
  • [9] Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids
    Ugo Cenci
    Shannon J. Sibbald
    Bruce A. Curtis
    Ryoma Kamikawa
    Laura Eme
    Daniel Moog
    Bernard Henrissat
    Eric Maréchal
    Malika Chabi
    Christophe Djemiel
    Andrew J. Roger
    Eunsoo Kim
    John M. Archibald
    BMC Biology, 16
  • [10] Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus
    Martin, W
    Rujan, T
    Richly, E
    Hansen, A
    Cornelsen, S
    Lins, T
    Leister, D
    Stoebe, B
    Hasegawa, M
    Penny, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) : 12246 - 12251