Boundary integral equations on the sphere with radial basis functions: error analysis

被引:11
|
作者
Tran, T. [1 ]
Le Gia, Q. T. [1 ]
Sloan, I. H. [1 ]
Stephan, E. P. [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
基金
澳大利亚研究理事会;
关键词
Boundary integral equation; Sphere; Radial basis function; Spherical basis function; SCATTERED DATA INTERPOLATION; POSITIVE-DEFINITE FUNCTIONS; APPROXIMATION;
D O I
10.1016/j.apnum.2008.12.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis functions are used to define approximate solutions to boundary integral equations on the unit sphere. These equations arise from the integral reformulation of the Laplace equation in the exterior of the sphere. with given Dirichlet or Neumann data, and a vanishing condition at infinity. Error estimates are proved. Numerical results supporting the theoretical results are presented. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2857 / 2871
页数:15
相关论文
共 50 条
  • [1] Preconditioners for pseudodifferential equations on the sphere with radial basis functions
    Tran, T.
    Le Gia, Q. T.
    Sloan, I. H.
    Stephan, E. P.
    NUMERISCHE MATHEMATIK, 2010, 115 (01) : 141 - 163
  • [2] Preconditioners for pseudodifferential equations on the sphere with radial basis functions
    T. Tran
    Q. T. Le Gia
    I. H. Sloan
    E. P. Stephan
    Numerische Mathematik, 2010, 115 : 141 - 163
  • [3] Strongly elliptic pseudodifferential equations on the sphere with radial basis functions
    T. D. Pham
    T. Tran
    Numerische Mathematik, 2014, 128 : 589 - 614
  • [4] Strongly elliptic pseudodifferential equations on the sphere with radial basis functions
    Pham, T. D.
    Tran, T.
    NUMERISCHE MATHEMATIK, 2014, 128 (03) : 589 - 614
  • [5] Radial basis functions for the sphere
    Baxter, BJC
    Hubbert, S
    RECENT PROGRESS IN MULTIVARIATE APPROXIMATION, 2001, 137 : 33 - 47
  • [6] Application of radial basis functions in solving fuzzy integral equations
    Asari, Sh. S.
    Amirfakhrian, M.
    Chakraverty, S.
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10): : 6373 - 6381
  • [7] Application of radial basis functions in solving fuzzy integral equations
    Sh. S. Asari
    M. Amirfakhrian
    S. Chakraverty
    Neural Computing and Applications, 2019, 31 : 6373 - 6381
  • [8] Solving elastic problems with Local Boundary Integral Equations (LBIE) and Radial Basis Functions (RBF) cells
    Sellountos, E.J.
    Sequeira, A.
    Polyzos, D.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 57 (02): : 109 - 135
  • [9] Solving Elastic Problems with Local Boundary Integral Equations (LBIE) and Radial Basis Functions (RBF) Cells
    Sellountos, E. J.
    Sequeira, A.
    Polyzos, D.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 57 (02): : 109 - 135
  • [10] A meshless method based on boundary integral equations and radial basis functions for biharmonic-type problems
    Li, Xiaolin
    Zhu, Jialin
    Zhang, Shougui
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (02) : 737 - 751