Spin-torque dynamics for noise reduction in vortex-based sensors

被引:7
|
作者
Garcia, Mafalda Jotta [1 ]
Moulin, Julien [2 ]
Wittrock, Steffen [1 ]
Tsunegi, Sumito [3 ]
Yakushiji, Kay [3 ]
Fukushima, Akio [3 ]
Kubota, Hitoshi [3 ]
Yuasa, Shinji [3 ]
Ebels, Ursula [4 ]
Pannetier-Lecoeur, Myriam [2 ]
Fermon, Claude [2 ]
Lebrun, Romain [1 ]
Bortolotti, Paolo [1 ]
Solignac, Aurelie [2 ]
Cros, Vincent [1 ]
机构
[1] Univ Paris Saclay, CNRS, Unite Mixte Phys, F-91767 Palaiseau, France
[2] Univ Paris Saclay, CEA Saclay, CNRS, SPEC,CEA, F-91191 Gif Sur Yvette, France
[3] Natl Inst Adv Ind Sci & Technol, Res Ctr Emerging Comp Technol, Tsukuba, Ibaraki 3058568, Japan
[4] Univ Grenoble Alpes, CNRS, CEA IRIG, GINP,SPINTEC, F-38054 Grenoble, France
关键词
MAGNETORESISTANCE;
D O I
10.1063/5.0040874
中图分类号
O59 [应用物理学];
学科分类号
摘要
The performance of magnetoresistive sensors is today mainly limited by their 1/f low-frequency noise. Here, we study this noise component in vortex-based TMR sensors. We compare the noise level in different magnetization configurations of the device, i.e., vortex state or uniform parallel or antiparallel states. We find that the vortex state is at least an order of magnitude noisier than the uniform states. Nevertheless, by activating the spin-transfer-induced dynamics of the vortex configuration, we observe a reduction of the 1/f noise, close to the values measured in the AP state, as the vortex core has a lower probability of pinning into defect sites. Additionally, by driving the dynamics of the vortex core by a non-resonant rf field or current, we demonstrate that the 1/f noise can be further decreased. The ability to reduce the 1/f low-frequency noise in vortex-based devices by leveraging their spin-transfer dynamics thus enhances their applicability in the magnetic sensors' landscape.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Exceptional points in coupled vortex-based spin-torque oscillators
    Matveev, A. A.
    Safin, A. R.
    Nikitov, S. A.
    PHYSICAL REVIEW B, 2023, 108 (17)
  • [2] Phase locking of vortex-based spin-torque nanocontact oscillators by antivortices
    Zaspel, C. E.
    APPLIED PHYSICS LETTERS, 2013, 102 (05)
  • [3] Synchronization in alternating linear chains of vortex-based spin-torque oscillators
    Zaspel, C. E.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 492
  • [4] Synchronization in linear chains of non-identical vortex-based spin-torque oscillators
    Zaspel, C. E.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 514
  • [5] Reading Spin-Torque Memory with Spin-Torque Sensors
    Sharad, Mrigank
    Venkatesan, Rangharajan
    Fong, Xuanyao
    Raghunathan, Anand
    Roy, Kaushik
    PROCEEDINGS OF THE 2013 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2013, : 40 - 41
  • [6] Agility of vortex-based nanocontact spin torque oscillators
    Manfrini, M.
    Devolder, T.
    Kim, Joo-Von
    Crozat, P.
    Zerounian, N.
    Chappert, C.
    Van Roy, W.
    Lagae, L.
    Hrkac, G.
    Schrefl, T.
    APPLIED PHYSICS LETTERS, 2009, 95 (19)
  • [7] Vortex-antivortex dynamics driven by spin-torque in a nanocontact
    Zaspel, C. E.
    Kireev, V. E.
    LOW TEMPERATURE PHYSICS, 2015, 41 (10) : 781 - 787
  • [8] Frequency shift keying in vortex-based spin torque oscillators
    Manfrini, M.
    Devolder, T.
    Kim, Joo-Von
    Crozat, P.
    Chappert, C.
    Van Roy, W.
    Lagae, L.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [9] Thermal and spin-torque noise in CPP (TMR and/or GMR) read sensors
    Smith, N
    Katine, JA
    Childress, JR
    Carey, MJ
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (02) : 114 - 119
  • [10] Direct Determination of Large Spin-Torque Nonadiabaticity in Vortex Core Dynamics
    Heyne, L.
    Rhensius, J.
    Ilgaz, D.
    Bisig, A.
    Ruediger, U.
    Klaeui, M.
    Joly, L.
    Nolting, F.
    Heyderman, L. J.
    Thiele, J. U.
    Kronast, F.
    PHYSICAL REVIEW LETTERS, 2010, 105 (18)