On semisimplicity of quantum cohomology of P1-orbifolds

被引:1
|
作者
Ke, Hua-Zhong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum cohomology; Orbi-curve; Dubrovin's conjecture; GROMOV-WITTEN THEORY;
D O I
10.1016/j.geomphys.2019.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a P-1-orbifold C, we prove that its big quantum cohomology is generically semisimple. As a corollary, we verify a conjecture of Dubrovin for orbi-curves. We also show that the small quantum cohomology of C is generically semisimple iff C is Fano, i.e. it has positive orbifold Euler characteristic. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] The spaces of Laurent polynomials, Gromov-Witten theory of P1-orbifolds, and integrable hierarchies
    Milanov, Todor E.
    Tseng, Hsian-Hua
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 : 189 - 235
  • [2] Computing the quantum cohomology of some Fano threefolds and its semisimplicity.
    Ciolli, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2004, 7B (02): : 511 - 517
  • [3] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds
    Iritani, Hiroshi
    ADVANCES IN MATHEMATICS, 2009, 222 (03) : 1016 - 1079
  • [4] Simplicial cohomology of orbifolds
    Moerdijk, I
    Pronk, DA
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (02): : 269 - 293
  • [5] SEMISIMPLICITY OF THE QUANTUM COHOMOLOGY FOR SMOOTH FANO TORIC VARIETIES ASSOCIATED WITH FACET SYMMETRIC POLYTOPES
    Maydanskiy, Maksim
    Mirabelli, Benjamin P.
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2011, 18 : 131 - 143
  • [6] Equivariant cohomology of torus orbifolds
    Darby, Alastair
    Kuroki, Shintaro
    Song, Jongbaek
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (02): : 299 - 328
  • [7] On Integral Cohomology of Certain Orbifolds
    Bahri, Anthony
    Notbohm, Dietrich
    Sarkar, Soumen
    Song, Jongbaek
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (06) : 4140 - 4168
  • [8] Torsion in the cohomology of torus orbifolds
    Hideya Kuwata
    Mikiya Masuda
    Haozhi Zeng
    Chinese Annals of Mathematics, Series B, 2017, 38 : 1247 - 1268
  • [9] Torsion in the Cohomology of Torus Orbifolds
    Kuwata, Hideya
    Masuda, Mikiya
    Zeng, Haozhi
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (06) : 1247 - 1268
  • [10] Torsion in the Cohomology of Torus Orbifolds
    Hideya KUWATA
    Mikiya MASUDA
    Haozhi ZENG
    ChineseAnnalsofMathematics,SeriesB, 2017, (06) : 1247 - 1268